
Malware Need "Attention" Too!

Malware continues to pose a deeply evolving challenge to the world of
security. There is an ongoing fight between attackers and malware analysts.
Traditional malware detection methods require a lot of time and human
resources. We turn to machine learning-based solutions for the problem in
the hand of identifying malicious programs. In this paper, we analyze the
malicious properties present within the API call sequence patterns of the
programs. We use API fragments and LSTM based model with attention
layers for classification. We present our experimental results on two publicly
available datasets. Our method based on API fragments and techniques
like attention gives better performance than other works that adopt similar
techniques after comparing the experiments.
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1 INTRODUCTION
There has been a lot of research on malware analysis and classifica-
tion of malware. This topic is of interest among many researchers,
and various tools and techniques are developed for it. There already
exists a lot of literature on tackling the problem of malware de-
tection and malware classification. However, the malware remains
a severe problem to individuals, companies and organisations as
attackers continuously use it as a tool to get confidential informa-
tion or perform attackers on the other machine. Malware analy-
sis can be performed using static or dynamic analysis techniques.
Though static analysis techniques are powerful and accurate but
the attackers hide the program’s main intent through techniques
like obfuscation, which leads to failing most of the static analysis
techniques. The attackers are becoming clever daily and have even
deployed techniques like polymorphism to reorder the codes and
create multiple virus variants. This demands for developments of
techniques that are less cumbersome and more adaptable to changes
in the programs.
Deep Learning has seen a significant rise in almost every field

like image processing, audio recognition, language translation and
whatnot. Even seemingly unrelated fields like Software Engineering
have started deploying these techniques nowadays. Since machine
learning has the remarkable ability to facilitate the task of feature
extraction from low-level data, many scholars have naturally re-
sorted to machine learning techniques for detecting malware. In
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studies like [Kosmidis and Kalloniatis 2017] people have used image
processing techniques to classify malware. The authors in [Vu 2020]
used API call sequences to detect malware. In [Nataraj 2015] uses
signal processing techniques and NLP methods to handle the assem-
bly code and building a model using LSTMs. These methods have
definitely shown the effectiveness of deep learning in this field, but
they still suffered from being unstable and getting easily disturbed.
We chose to study the programs dynamically and hence extract

out the behaviour of the program during execution. This paper
explores this problem using a machine learning perspective and
tries different techniques for the same. Here, we have explored the
idea to combine techniques of NLP with Malware analysis.

Our method is used on programs made for the Windows platform
by extracting the API execution sequences. To exploit the local
malicious properties present in a program, we cut the API sequence
into smaller API fragments and worked on them. We generate word
embeddings for many API calls in our approach and then use these
embeddings to generate sequences (sentences) of these calls. We
use the analogy from English vocabulary and practice frameworks
like Word2Vec to prepare the required embeddings. Using such a
technique allows us to generate semantically valid embeddings for
each API call, which naturally helped us in the process employed
ahead.We use two layers of LSTMs and two layers of attention in our
model. Since an API call can be highly correlated to a previous API
call in a different fragment, so we use the attention layers to help us
model the relation between API calls present in different fragments.
The final embedding represents the program and operates as an
input for the machine learning classifiers. The paper also discusses
the further classification of the program into the different types of
malware classes.

Experimenting on multiple datasets indicated that our technique
is stable and produces good results even with only a few thousand
samples in hand. The approach used in this paper of combining
LSTMs with attention network outperforms the other works that
use similar strategies. Our approach is stable towards techniques
like obfuscation since we are using API calls at the very heart of
our approach 3.2. Furthermore, using the model on a binary for
prediction is also relatively easy since it just involves extraction of
API sequences which can be automated using analysis systems like
Cuckoo Sandbox [Cuc 2020].

Our work contributes as follows:

• Use the analogy of language vocabularies and usingWord2Vec
like models to generate embeddings that made sense seman-
tically and naturally helped achieve good results.

• Analyse the local malicious properties by converting them
into fixed-length API fragments.

• Continuing with the analogy with language, we used NLP
models like LSTMs to locally utilise the features/knowledge
present in the API sequences.

• Combining the normal LSTMs with attention layers to get
the correlations present between calls globally.
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• Our paper demonstrates the effectiveness of LSTM models
and techniques like attention in malware analysis which can
be taken up and explored further for research.

The paper is structured into the following sections further. Sec-
tion 2 discusses the current literature present for this field, Section
3 explains the proposed model in detail and provides theoretical sig-
nificance of the method, Section 4 provides experimental evidence
to validate our idea and Section 5 concludes the paper.

2 RELATED WORK
It has been quite a few ages since the start of the era of the de-
velopment of malware. Nowadays, attackers have become more
clever in preparing these malicious programs, and there is endless
competition between malware developers and malware analysts.
The speed of malware development is relatively high, and every-
day malware developers come up with new and more sophisticated
ways. The malware being developed in recent times is highly com-
plex and uses obfuscation techniques, which makes it extremely
difficult to analyse such programs. Malware can be analysed using ei-
ther behaviour-based or signature-based techniques. The signature-
based techniques though being fast, lose their effectiveness against
obfuscation techniques and the behaviour-based techniques since
they require observing the behaviour take a lot of time and make
the task much more cumbersome for the analyst. Thus, the detec-
tion of malware using traditional approaches like heuristic-based,
graph-based, entropy-based etc., is not possible. To tackle this ever-
growing field of malware development, analysts need to learn from
the malware program’s behaviour. Thus, machine learning provides
a solution to develop classification models to get ahead of the new
variants of malware. Malware analysis techniques fall mainly under
these two broad categories.

• Static Malware Analysis
In this analysis, various static features of a program like hash
values, opcodes, strings and PE header information are ex-
tracted without executing the program. The malicious pro-
grams are disassembled using tools like IDA Pro, Capstone,
Radare etc. and then assembly code is examined to get the
execution flow of the file and patterns present in the file for
detecting some signs of malicious activity. This type of analy-
sis suffers from the drawback of being highly time-consuming
and much more complicated. Techniques deployed by devel-
opers like obfuscation such as code encryption, reordering
instructions, dead code insertion further make the analyst’s
task much harder.

• Dynamic Malware Analysis
In this technique, the malware is executed on the host sys-
tem by making virtual environments and then logging the
program’s activities. Various activities of the program like
file system operation, process generation and execution, API
calls, and network activities are observed. Based on them,
the file is classified as benign or malicious. The files which
can not be analyzed using static analysis techniques can be
analyzed using this technique.

Since the traditional methods suffer from the requirement of a
significant workforce and time, we turn to machine learning-based

approaches. Machine learning-based methods are highly general-
izable and do not require much manual work. Machine learning
can even learn some features that are too difficult or can not be
extracted manually because of its ability to learn. In [Vu 2020], the
authors use the assembly file of the program (produced by the dis-
assembler) and convert the assembly bytecodes into pixel features
and then use CNNs to learn. Although this deploys the program
information, an attacker can still confuse the classifier by inserting
external assembly functions. The authors in [Zhang et al. 2017] use
SVM to build a malware detection framework based on the concept
of supervised learning and achieve good results. In [Alazab et al.
2010], the authors use the API calls appearing made by the program.
Their method relies on a single malicious API that could appear on a
series of call sequences, and only the exact API sequence is harmful.
In another work, the authors [Kumar et al. 2019] classified mal-

ware using early-stage behavioral analysis. The goal is to classify
malware into six malware classes (backdoor, trojan, trojandownloader,
trojandropper, virus, and worm). pefile python library is used to ex-
tract the static information, and Cuckoo sandbox is used to extract
the dynamic features. They use 15,000 malware samples for the
analysis and extract 52 static and 72 dynamic features. The primary
category for dynamic features are network-based features, API bin-
based features, Process-based features, and Signature-based features.
Authors perform the time analysis for three time frames of 4s, 8s,
and 12s each. The best accuracy for 4s is 98.55%, for 8s is 98.61%, and
for 12s is 98.65%. The accuracy for static analysis is 97.952%, and
dynamic analysis is 99.135%. They also perform a hybrid analysis
which achieves an accuracy of 99.736%.

Many researchers use the graph-based analysis techniques [Dam
and Touili 2017][Jiang et al. 2018][Østbye 2017]. The authors in
[Jiang et al. 2018] use graph-based techniques as well as Deep Learn-
ing techniques for malware analysis. The authors in [Cheng et al.
2019] use the concept of clustering based on a given binary’s family
dependency graph. The authors in [Pektaş and Acarman 2020] use
Deep Learning to create embeddings for malware based on their API
Call Graphs. In [Xiao et al. 2019] the authors use high-level features
of extracted behaviour graph using Stacked-AutoEncoders. This
method is precise has the disadvantage of working on the whole
sample while malicious fragments are only partial, which affects
the prediction of malicious behaviour.
Multiple types of research on malware detection demonstrates

that feature-based deep learning malware classifiers have a better
generalization to currently unseen threats and unsigned software.
These methods, however, assume that API calls are independent,
resulting in lower accuracy. In a work [Fadadu et al. 2019], the
authors use API call sequences to reduce the false positive. These
approaches use the API method call sequence as malicious patterns
to detect malware. In this work, the API call sequence is extracted
for each malware and the benign program. Then they extract ef-
fective sequences for malware detection. Finally, the dependency
between API calls is considered based on their call sequence. The
main difficulty in these approaches is the method adopted for API
call sequence extraction.
The authors in [Tang and Qian 2018] analyze the API attributes

and propose a map color method based on categories and occur-
rence time for a unit time the API executed and then use CNNs

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: August 2021.



Malware Need "Attention" Too! • 1:3

for classification. In [Xiaofeng et al. 2018], the authors proposed a
new statistical method that is based on extra information addition
and removal and hence led to reduction of the length of API call
sequences. These sequences are then fed to LSTMs for training.
Researchers also explore ways to extract features using machine
learning techniques. In [Alazab and Venkatraman 2013] the authors
explore ways of extracting features from the frequency of API and
compare them with other neural networks. The methods based on
API call sequences are accurate. Still, they suffer from long execu-
tion sequences appearing in the program whilst the actual malicious
part is a tiny portion of the total code. The method of extracting effi-
cient sequences is explored in [Liangboonprakong and Sornil 2013],
but they only retain the sequential nature of the code execution.
In [Massarelli et al. 2018], authors tackle the problem of finding
similarity between two binary functions by producing the function
embeddings through a self-attentive neural network. They also pro-
vided ways to detect malware by comparing the given program with
a program known to be malicious.

3 PROPOSED METHOD

3.1 Datasets
We use namely two datasets in our experiments. The first dataset is
collected from Oliveira et. al. [Catak et al. 2020]. It consists of 42,797
malware API call sequences and 1,079 benign API call sequences. We
use this to train our network for binary classification by splitting the
dataset into 1079 examples of malware and benign classes, which
we split in a 7:3 train to test ratio. The dataset consists of the first
100 API call sequences of various program files created for running
in the Windows Operating System.

The second dataset we use is collected from Catak et al. [Oliveira
2019] which features 7107 malware API call sequences across eight
categories, namely Trojan, Backdoor, Downloader, Worms, Spyware
Adware, Dropper, Virus. We use this dataset for our 8-way classi-
fication experiments. The dataset consists of unfiltered API call
sequences of various malicious programs created for attacking the
Windows Operating System. The API call sequences are of diverse
lengths, varying from a length of just 10 to a maximum of 400K API
calls. The sequences also consist of repeating calls.
Due to the almost similar natures of all the categories from the

execution standpoint and the wide variety in API calls, we consider
Dataset-2 a more challenging dataset than Dataset-1.

3.2 Methodology
The methodology pursued by us aims to employ the ideas of Natural
Language Processing to the problem of Malware Detection, as high-
lighted by us earlier, and we make use of API calls used by Malware
to perform this task.
Our main motivation for using this approach is the similarities

we find in how the API calls are arranged in any binary file and how
the words are arranged in any document in a natural language.

For example, consider any sentence from a document in the Eng-
lish language and any function from a Windows Executable. Just
like the sentence is composed of words, the function is composed of
API calls. Furthermore, consider the natural language dependency

boy

the

who

lives

here

I

saw

nsubj

nsubj

dobj

det

ref

rcmod

ref

dobj

Fig. 1. Sentence Dependency Graph in English
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Fig. 2. An API call graph. As can be seen, its structure is very similar to that
in Figure 1

graph [Chen and Manning 2014] of a sentence in the English lan-
guage such as "I saw the boy who lives here" which is displayed in
the Figure 1. The structure and connections of the generated graph
are very similar to the structure of the API call graph generated
from API call sequences, which is shown in Figure 2. It is intuitive
as different API calls in the call graph should be related in purpose
and operate upon the results of the previous API call, similarly as
words in a sentence are related and operate upon the context till
the previous word.
Thus we decided to capture this intuition of modelling API call

sequences as a human language with the help of Natural Language
Processing techniques. Our approach first tries to judge the func-
tionality of different API calls by finding related API calls in the
entire corpus, like building up a vocabulary of words.
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Subsequently, we establish relations at a function and Binary
File-level (sentence and document level for a language). That is, we
use methods to train our classifier such that it understands what
different API calls (words) represent when presented in a specific
order to form a function (sentence). Further, it needs to understand
how the various functions (sentences) combine to form the Binary
File (document).We employWord2Vec and LSTMswith anAttention
mechanism.

3.2.1 API call level understanding – Word2Vec. To get a se-
mantic understanding of the API call sequences, we use Word2Vec
[Mikolov et al. 2013]. Word2Vec is a popular method to generate
meaningful representations and understand the semantics of words
and sentences and used mainly for natural languages by working
on their inherent properties and structures. It figures out the rela-
tion between different words and observing the similarities in the
structure of natural language sentences and API call sequences. We
apply the same to generate embeddings for various API calls and
thus use it to perform malware analysis.
We showcase our intention through Table 1. The first column

shows a sentence in the English Language, and the words high-
lighted in [Galassi et al. 2020] according to their Attention score
related to the task given. We give 3 more examples from our dataset
[Catak et al. 2020] and the tasks being the functionality of the API
calls. We take 3 tasks - Cryptography, System Metrics and Resource
Handling. The sentences are the 10-length sequences picked up di-
rectly from the dataset. For Cryptography, CryptAcquireContextW,
CryptCreateHash and CryptHashData are all examples of functions
which are related to a cryptograhic module which performs oper-
ations for authentication, encoding or encryption. In the System
Metrics task, GetSystemMetrics is the API function from Windows
User Controls header file Winuser.h which provides system metrics,
for example, the width of a cursor in pixels, or the number of display
monitors on a Desktop. The Resource Handling task also accurately
highlights the LoadResource and FindResourceExW functions which
are used to handle resources in the memory.
Firstly, to get a representation of the relationship between the

API calls at a function level, we model the functions as separate
sentences and feed them into an LSTM with an Attention layer on
top. The output is a vector representation of a function which is
formed by applying self-attention on the constituent API calls of
the function.

It is to be noted that the API call sequences obtained are usually
wildly varying in length and have a lot of repetitions, which makes
it difficult for them to be modelled as ordinary length sentences
as found in human language. Thus we preprocess the API calls by
allowing only a set number of consecutive repetitions of the same
API call.

Further, we used the N-gram model and considered fixed-length
sequences of these API calls equivalent to one sentence of a hu-
man language. N-grams constitute words, which makes N-grams
sentences.
Subsequently, to establish a relationship between the different

functions and thus in the entire Binary file, we use a second LSTM
layer with Attention, which works similarly to the previous LSTM
layer, however working with vectors representing functions and

not individual API calls. The output of these two layers is a vector
representation of the entire Binary file, which considers the order
and contexts of its constituent API calls and functions. Thus, it is
an accurate representation of the properties of the file, much like
the embeddings produced by NLP models when a human language
document is passed through them.

SetFilePointerEx

NtWriteFile
GetFileSizeEx
SetEndOfFile
SetFileTime

MoveFileWithProgressW

SetFileAttributesW
NtReadFile

SetFilePointer
GetTempPathW

DeleteFileW

StartServiceW

OpenServiceW 
OpenSCManagerW 

NtGetContextThread 
GetVolumePathNameW 

InternetOpenA 

InternetSetOptionA 
CreateProcessInternalW 

InternetOpenW 
InternetConnectA 
InternetConnectW 

.  .  .

.  .  .

Control Flow

Fig. 3. API call sequences, and their respective 10 closest API functions.

3.3 Network Architecture
We train a customWord2Vec model, as mentioned earlier. Word2Vec
helps us in getting embeddings for a completely new vocabulary
of API call sequences. We train the Word2Vec model on Dataset-
1[Catak et al. 2020]. Figure 3 shows a small snippet of an API call
sequence. We present 2 API calls, namely SetFilePointerEx and Start-
ServiceV, and the top 10 closest API calls calculated by measuring the
cosine similarity between the embeddings generated by our trained
Word2Vec model. As observed in both the examples indicated in
Figure 3, the functions found closest is quite related to the ones
being compared. For instance, StartServiceW is an API function to
start a service, and the two most similar API functions found are
OpenServiceW & OpenSCManagerW. These functions open an exist-
ing service, establish a connection to the service control manager,
and open the specified service control database. Similarly, SetFile-
PointerEx also gives us closely related functions such as NTWriteFile
which writes data to an open file, and SetEndOfFile which sets the
physical file size for the specified file to the current position of the
file pointer. It verifies the fact that Word2Vec successfully train a
model which identifies the semantics between API calls.
In total, we experiment with two varieties of models. One of

them is the vanilla flavour, which contains two stacked LSTM layers
with 2 Linear layers. In the second one, we attach an Attention
layer after each LSTM layer, which we hypothesize will enable the
representations to incorporate more relevant and dominant API
calls/sequences in the vector-space representations. This will be
passed to further layers to give us more meaningful and accurate
representations, hence delivering better results in identifying newer
and fresh malware.
With the above setup, we conduct experiments for both binary

and 8-way classification. Furthermore, our model consists of an
embedding layer that shares the weights of the custom trained
Word2Vec model, from which we use the embeddings 𝑣 ∈ R𝑘 . As
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Table 1. Attention visualization for API call sequence. The first column gives is an example of a sentence in English.

Task: Cleanliness Task: Cryptography Task: System Metrics Task: Resource Handling

Not CryptAcquireContextW GetSystemMetrics LoadResource
the NtOpenKey NtClose DrawTextExW

cleanest NtQueryValueKey GetSystemMetrics GetSystemMetrics
rooms NtClose NtAllocateVirtualMemory FindResourceExW
but NtOpenKey LdrLoadDll LoadResource
bed NtClose LdrGetProcedureAddress GetSystemMetrics
and LdrGetProcedureAddress LdrGetDllHandle DrawTextExW

bathroom CryptCreateHash FindResourceExW LdrGetDllHandle
was LdrGetProcedureAddress LoadResource FindResourceExW
clean CryptHashData FindResourceExW LoadResource
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Fig. 4. Pipeline for our model

mentioned above, we experiment with models consisting of two
stacked LSTM layers. The model with Attention has single Attention
layer succeeding each of the LSTM layers, after which follows a
Batch Normalization layer and two Dense layers, which are common
in both of the models above.
Figure 4 shows the pipeline of our approach in which one may

automate the process using cuckoo sandbox before Preprocess (Max
4 consecutive repetitions) block. After the Preprocess (Max 4 con-
secutive repetitions) block, one may automate all the steps using
our approach, discussed in subsection 3.2.

4 EXPERIMENTS AND RESULTS

4.1 Experimental Setup
For the conduction of experiments, we use two variants of our
model architecture as described in subsection 3.3. We use a dropout
rate of 0.2 in both our LSTM layers and an N-gram size of 10 for
our experiments. The length for N-gram is chosen for reasons as
referred to in [Kim 2018]. We use the Adam optimizer with default
configuration for training. The word embedding size is set to 20,
as this value is giving us the maximum cosine similarity between
related API calls.
We conduct experiments by first freezing the Word2Vec em-

beddings, pre-training the deep layers, and then unfreezing the

Word2Vec layers for fine-tuning to learn more robust features. In
case any unknown API calls are encountered in the input, they are
given a < 𝑈𝑁𝐾 > tag and are assigned embeddings equal to the
average of all embeddings corresponding to the known API calls.

In order to conduct Ablation studies and showcase the advantages
of using Attention for malware classification, we also present results
without using the Attention mechanism after the LSTM layers. We
perform our experiments, modelling them as classification problems.
For Dataset-1 [Catak et al. 2020], we classify the samples as either
Malware or Benign.
Similarly, we report the results using Dataset-2 [Oliveira 2019].

Even this dataset is a multi-class dataset, and we report the results as
a binary classification problem – performing classification as class
1 to be Trojan and 0 for other class once, then in the next iteration,
classifying the samples as class 1 to be Backdoor and 0 for rest, and
so on). We report the results in this fashion to be consistent with
the existing literature using this dataset and the relatively small
quantity of samples of each class available.

EvaluationMetrics: The datasets we use are mostly unbalanced
and generally lean more towards one category than the other. For
example, for Dataset-2, as we are modelling it as a binary classifica-
tion problem, the number of samples with label 0 is approximately
seven times that of those with label 1. Thus along with accuracy,
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we need to report class-wise metrics such as Recall to display our
model’s robustness and classification abilities.
We also report the same metrics for Dataset-1 along with the

Precision and F1-score. However, we use the same number of test
samples for both classes in this dataset to maintain consistency with
results in the literature.

4.2 Results
4.2.1 Dataset-1. It is necessary to make the number of training
and testing samples equal for Dataset-1, which is highly imbalanced,
as in subsection 3.1 to perform experiments. Thus, we randomly
sample 1079 data points from Malware, take all the 1079 data points
from the benign category, and then randomly divide these in the
ratio of 7:3 in the train to test data. The remaining samples fromMal-
ware Class are discarded as they result in an imbalance in training.
This exact procedure is followed by the original paper presenting the
dataset, [Catak et al. 2020], which ensures experimental consistency.

We compare the results of both methods with and without atten-
tion with the results presented by [Catak et al. 2020], that is, using
1 and 2 layer Deep Graph Convolutional Neural Networks and a
two-layer LSTM. The results using various evaluation metrics are
shown in Table 2.

Table 2. Results of experiments on Dataset-1 [Catak et al. 2020] on various
models. The best results for each metric are in bold

Method F1-Score Precision Recall Accuracy

1-Layer DGCNN [Catak et al. 2020] 0.9076 0.8879 0.9283 0.9105
2-Layer DGCNN [Catak et al. 2020] 0.9201 0.9216 0.9186 0.9244
LSTM [Hochreiter and Schmidhuber 1997] 0.8738 0.8542 0.8932 0.8727

Our approach (no Attention) 0.9586 0.9508 0.9667 0.9583
Our approach (Attention) 0.9697 0.9586 0.9810 0.9693

As see in the results present in Table 2, our methods far outper-
form the results of the methods reported in [Catak et al. 2020]. We
also report the accuracy of a two-layer LSTM method. We feed-
forward the outputs from the first LSTM to the second without
using any N-grams and concatenating them before being passed as
input in the second LSTM layer. The results on a single layer LSTM
come out to be even lower than the DGCNN results. It shows that
using just the recurrent properties of LSTM is not enough to ensure
enough attention paid to the inputs and the context in the API calls
is taken care of by the network.
Our results are also visibly better when using Attention with

our method, as compared to without it. It shows that using just
Word2Vec embeddings is not enough to ensure that the network
utilizes the context-dependence of the API calls.We need a dedicated
attention mechanism to ensure that the context is utilised.

4.2.2 Dataset-2. Dataset-2 is relatively complicated, as mentioned
in subsection 3.1. The API calls in this dataset are repeating in nature
and also are vary significantly in length. Thus, it is important to
preprocess this dataset.
We observe that the significant variation in lengths from 10 to

400K is mostly due to repetitions. If we removed any two consecutive
calls to the same API function, it resulted in a maximum length of

345 API calls. Thus, to test the effectiveness of our formulation, we
allowed a small amount of repetition in which we let a maximum
of 4 consecutive calls to the same API function to get our final data
points. In contrast, excessive repetitions are removed, and the first
distinct function call took its place after all the repeats.
Subsequently, we obtain a dataset where the maximum length

of the input is 485, while the shortest length stays at 10. In order
to ensure good results and make sure that this high variation in
lengths does not cause a problem in classification, we trim the API
call sequences to a maximum length of 200.

Following these pre-processing methods allow us to get our final
dataset to conduct experiments. We again use this dataset in a binary
classification setting for comparing with other results available
in the literature. Thus to perform experiments on one class, we
labelled all the samples belonging to that class as 1 and the remaining
samples as 0. We use an 8:2 ratio train-test split, ensuring that the
number of samples with label 1 and 0 are equal in the training and
testing data to demonstrate our performance better.
We compare the results of both of our methods with the results

present in [Oliveira 2019], which uses a simple two-layer feedfor-
ward LSTM, learning the embeddings while training. We also com-
pare our results with popular machine learning algorithms which
do not utilize deep feature extraction layers, using TF-IDF vectors
as the embeddings. The results are presented in Table 3. We report
the Class wise accuracy as it is a multi-class dataset.

As we see in Table 3, both our methods perform much better than
the other methods in all the tasks and have a significant boost in
the mean performance per class. Our methods also perform very
well on the harder classification tasks in this dataset: Spyware and
Trojan (which have significantly less recall values when the other
methods are used).
Similar to Table 2, our attention based performs better than the

method without attention, even in Table 3.

5 CONCLUSION
In this work, we explore a way for analyzing the maliciousness
in the program using the API call sequences present in that. We
utilise the inherent structure of these API call graphs by looking at
their similarity with the dependency graphs of the English language.
It naturally hints us to go for the domain of Natural Language
Processing.
Hence, we design an NLP-based detection framework for the

detection of malicious programs. Modelling the API segments in the
English language sentences and then learning the features using
techniques like "Attention" and NLP models like LSTMs help us
produce better results than previous work adopting similar methods.
The experimental results also show that our approach is stable and
efficient across different datasets. Our work effectively explores
the application of NLP-based techniques in the malware analysis
field, which can have important significance on future researches
in this field. In future work, one may explore more complex NLP-
based primitives like Transformers instead of LSTMs. Deploying
the method as a practical application is also a potential future work
after optimising the technique and pipeline further.
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Table 3. Results of experiments on Dataset-2 [Oliveira 2019] on various models. The best results on each malware type are in bold. The precision of the results
is upto 2 decimal places for consistency with the reported results in the literature.

Model Adware Backdoor Downloader Dropper Spyware Trojan Virus Worm Average

Adaboost [Freund and Schapire 1995] 0.76 0.52 0.69 0.57 0.41 0.51 0.74 0.57 0.60
Decision Tree [Breiman et al. 1984] 0.45 0.40 0.51 0.37 0.11 0.16 0.41 0.78 0.40
kNN [Wang and Su 2011] 0.70 0.57 0.67 0.45 0.32 0.32 0.62 0.49 0.52
RF [Breiman 2001] 0.48 0.62 0.52 0.35 0.17 0.16 0.80 0.58 0.42
2-layer LSTM [Hochreiter and Schmidhuber 1997] 0.77 0.56 0.59 0.44 0.42 0.28 0.68 0.45 0.52

Ours (no Attention) 0.84 0.77 0.83 0.84 0.80 0.71 0.92 0.82 0.82
Ours (Attention) 0.94 0.85 0.96 0.87 0.84 0.77 0.96 0.88 0.88
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