
Seagull Verification Framework

yatharth.goswami@epfl.ch

December 2022

1 Overview

This document serves as a report for my work in understanding the Seagull Verification Framework
during my time as a Semester Exchange Student at EPFL and as a research assistant at RS3 Lab,
EPFL. I aim to write this in a concise and easy-to-understand manner so that anyone new to this
framework (or field) can comprehend it.

2 Seagull Approach

The main problem with verifying concurrent programs is to reason about all possible thread interleav-
ings. Recent works have utilised Concurrent Separation Logic [2] for this purpose. Seagull also relies
somewhat on this concept, but it uses it differently. Firstly, I will focus on how Seagull can be used
to verify use cases where a thread exclusively owns resources. Then, I will incorporate cases where
read-sharing is also allowed. An example of a bank application has been provided to understand the
concepts better. The bank application consists of series of accounts along with query and transfer
functionalities. I will also like to make it clear beforehand what Seagull can and cannot do. It can be
used to verify the functional correctness of the program (i.e. if the function returns the output will
follow the given specification). It cannot prove termination of the program, or deadlock freedom, or
liveness properties. Now, moving on to the first part involving exclusive ownerships, they propose the
following steps for verification

2.1 Specification

Develop a specification for the program. This involves building a trusted high-level state machine
which takes atomic steps. For the bank application, a specification could consist of a mathematical
dictionary mapping accounts to the amount in them, along with rules for making steps in case of query
and transfer requests.

The main point of verification now becomes to connect the implementation to specification. We
want to prove that the implementation satisfies the specification. But in complex programs involving
concurrency, it is tough to reason about all possible thread interleavings in the sophisticated imple-
mentation that a programmer might have written. Hence, directly proving implementation satisfying
the specification is a next-to-impossible task. To handle this, they create an intermediate step first
and call it the Abstract View.

2.2 Abstract View

We now develop an abstract view of the program in the form of a state machine. This should be
complex enough to represent the program’s concurrency and implementation logic but abstract away
the exact details like threads, memory etc. For the bank example, if the implementation uses a hash

1



map to implement the mathematical dictionary in the specification, then the abstract view will be a
sequence of hash entries with query and transition logic. This part of the program is untrusted. There-
fore, we must prove that the abstract view refines the specification developed before using frameworks
like TLA+.

If you think of the problem now, it still pertains. Trying to prove that implementation matches the
abstract view is still tricky as it is also prey to the same problem as specification. Let’s think about
the exact problem now. In the bank example, the implementation might give accounts named A and
B to a thread which wants to transfer money between accounts A and B. In this case, this thread
does not know the rest of the accounts. There might be another thread which has taken the lock for
other accounts and changed the amounts inside them parallelly. This is not a problem with sequential
implementations as, in that case, the whole program state is visible to a thread, and it can reason
about facts about the complete program state at any instant.

2.3 Idea of Sharding

Now, we come to the key insight about Seagull. Their idea is that if a thread owns a resource ex-
clusively, it can reason about only its state in an instant. Let’s call this state (a part of the overall
abstract view state machine) a shard. Concretely, a shard is a part of an abstract view that a thread
can reason about with all authority. Now, if we soundly reassemble all the shards, we get the complete
picture of the program. We can get the complete abstract view by developing a global state machine
by assembling different shards. Once we get the global state machine, we can apply the standard tech-
niques to investigate invariants. One might use state machine refinements to explain the program’s
interaction with external devices.

Note that since we want the shards of the program state to be combined in order to form global
state machine, they naturally get encoded as elements of a Monoid. A commutative monoid is a set
with a composition operation (·) which takes two elements of the set and returns a new element from
the same set. This operator is called composition operator and is associative and commutative for
a commutative monoid. Now, we formalize the above intuition below in the form of LTS (Localized
Transition Systems) and GSM(Global State Machine).

2.4 LTS: Localised Transition System

Seagull introduces this to formalize the idea that a transition updates and depends on only a portion
of state, while the rest of the state is irrelevant. LTS is a triple (M, Init, τlocal), where M is the state
of states which form a commutative monoid, Init is the set of initial states and τlocal represents a local
transition function, which takes in two elements from M and returns a boolean, as to if the transition
between those two states is allowed or not.

In a practical sense, for defining an LTS, one needs to define the set of states (which should be dividable
as shards) and the composition operation (·) to assemble two shards to form a bigger shard. Now, try
to think about what a transition of the global machine would look like. Since we are in the realm of
exclusive ownership of resources, any global transition would be composed of some local transitions
inside different shards + some part of the global state remaining unchanged. This is how the global
state machine gets defined.

2



2.5 GSM: Global State Machine

Suppose you have six accounts in your dummy bank application (say, A, B, C, D, E and F ). Now, say
you want to transfer some amount from account A to B. Parallelly, you would also want to transfer
from account C to D. Also, your locking strategy has per-account locks. This means that one of
the threads will take locks for accounts A and B, and another will take locks for accounts C and D.
Therefore, one of the threads will have access to shards of accounts A and B and other threads will
have access to shards of accounts C and D.

Say you reassemble these four shards before and after the transfers. Originally, their composition was
state d, and after the transfer, their composition led to state d′. Say, the composition of shards for
the rest of the bank application (i.e. accounts E and F ) to be e. We can say the transfer was a valid
transition step in global state machine iff

τglobal(s, s
′) = τlocal(d, d

′) ∧ (s = d · e) ∧ (s′ = d′ · e)

In general, the transition is said to be valid in the GSM iff

τglobal(s, s
′) = ∃d, d′, e · τlocal(d, d′) ∧ (s = d · e) ∧ (s′ = d′ · e)

Intuitively, this connects the local transitions to global transitions in the sense that any global tran-
sition can be viewed as a series of local transitions (or a transition in LTS), keeping the rest of the
state unchanged. Emphasizing again on the fact here that doing this reassembly is sound only when a
thread has exclusive access of the shard which it is reading/writing. With this global state machine,
we can prove things which would have been impossible seeing just the local view; for example - we can
assert that after all transfers are done, the sum of the total money should remain constant. You can
also prove various invariants about the program, being given this global view. However, for applying
the state machine refinement technique, the authors say you need to connect this to the external
interactions. This is because your trusted spec will have claims about the observable behaviour of the
program, and from this GSM, we don’t distinguish between internal and external actions. So, let’s
move on to remedying that now.

2.6 Abstracting External Interactions

If we want to make claims about the observable behaviour of our program, we need to establish a
connection between our LTS and the observable behaviour. We must do this as we must refine our
abstract state machine into the trusted program specification. The authors do this by just making the
shards corresponding to the request (Request(id, c)) and response (Response(id, r)) as distinguished
ones, different from the regular ones. For our bank example, we will have the request shards of the form
of a map having the key as an id and value as a command, we want to perform (like transfer(A,B, x)
≡ Transfer x amount from account A to B). Similarly, for the response, we can have shards as a map
from id to a value, where id is the same as request id and response can be the final amount in the
account A. The id is required to confirm that the response is given to which request.

2.7 Connecting with Implementation

The next step is to prove that the implementation follows the abstract view (GSM) that we developed
for the program above. Seagull uses a special ghost data type known as Token to do this. Token
represents a shard of the overall state, and therefore, its values are elements from a commutative
monoid of the LTS formed above. Intuitively, you can think of Tokens as something that is present
in the implementation but is just a representative of the LTS. Since tokens are just representations
of shards inside implementation, they will store a program state as well. Our main aim of showing

3



the equivalence of the implementation to the GSM would be to show that the value inside the to-
kens (which gets updated using the LTS transitions) matches the corresponding values in the physical
variables in the implementation at the starting point and ending point of the procedures. This is the
planned way to establish equivalence between the implementation and GSM.

Tokens should behave just like shards in nature. For example - When you get a request from a client
inside the LTS, you would add a new shard corresponding to this request to your old shard. Similarly,
in the implementation, you would inject a new request token when you ask for a command to be
executed. As for the response, when the program provides a response to the client, it removes a
shard from the overall program state, i.e. the response shard. Similarly, inside the implementation,
you would equivalently eject a response token when you return from the function. For performing
internal transitions, you need to provide some trusted API for exchanging the old token (say d) with
the new token (say d′), given τlocal(d, d

′) holds. The idea is to make, somehow, a connection between
how a transition in LTS would look like and then try performing the same through tokens inside
the implementation. This way, if the physical state of the program matches the ghost token state in
the end, we can infer that the implementation obeys the abstract view or the global state machine
transitions.

2.8 Ownership Concerns

If you think of the above solution, there is still a problem. If the tokens represent shards of the overall
program state owned by different threads, then we should be able to reassemble or combine them at
any stage to get a global state. For this to hold, it should be true that no token is owned by more than
one thread at any instant. Another concern is what if the implementation produces its own tokens
(to pretend a request occurred?) or duplicates the existing tokens (to retain the rights of using the
tokens again).

To prevent these malpractices, Seagull employs a linear type system [1]. The idea is to make the ghost
tokens linear to ensure that there is just one token owner. This also prevents the production as well
as duplication of tokens. The only way to obtain tokens will be to go through the LTS transitions
through trusted APIs.

2.9 Seagull Memory Management

Since Seagull relies on Linear Dafny [3] for verification and Dafny does not support shared memory,
Seagull provides its own memory primitives to handle shared memory. It provides two memory prim-
itives - Atomic Memory and Shared Memory which is data-race-free. It maps this memory model to
C++ memory model. Let’s now discuss the memory primitives in a bit detail and also how does it
achieve the data-race-free shared memory primitive.

The Atomic memory is the usual atomic memory and supports atomic operations (like load, store,
Compare-and-Swap etc.) Their Atomic primitive is basically like a lock, in the sense that it allows us
to store some ghost state along with physical state and tie these two using some invariant known as
atomic invariant. Whenever you do some operation on the atomic memory, you need to check that the
atomic invariant holds after doing the operation by modifying the ghost token stored in the atomic
memory appropriately. Another thing to note is that Atomics support sequentially consistent ordering
only.

The other type of memory is called a Cell. Seagull enforces that Cell is data-race-free by associating
a ghost Permission token to it. This is an idea from Separation Logic to enforce ownership. Multiple
threads can have the reference to the Cell memory at a time, but to read/write to that memory, they

4



need that special ghost Permission token. The fact that the memory remains data-race-free relies on
the fact that Permission token is held by one thread at a time, which they enforce using their linear
type system.

2.10 Building a Simple Spin Lock

Another thing to note is what is the semantics for the passing of these tokens, i.e. How would one
thread relinquish the right to that memory and pass this right to another thread? According to their
model, Atomic allows its tokens to be passed freely, while Cell does not allow this directly. Therefore,
generally, the Permission token for the Cell is to be passed using an Atomic. This also allows us
to build a simple spin lock using the Atomic and Cell memory primitives. The idea is to store the
resource inside the Cell and keep its Permission token inside some Atomic. The Atomic will physically
store the exclusive flag boolean as to whether the lock is free. The threads trying to get the resource
will have the reference to the Cell but not the permission token. To get that, they will check the
Atomic memory for if the lock is free. If it is, the atomic will pass the ghost Permission token to that
thread and update its physical value to correspond to the lock taken. While releasing the lock, the
thread has to deposit the ghost Permission token back into the Atomic.

2.11 Verifying Custom Read/Write Tools

Seagull authors claim to have developed a new logic called Burrow [4], which allows them to separate
the verification of application logic and synchronization primitives. I have not completely grasped this
part as to how they can achieve this. Still, I will continue explaining how they have approached the
verification for any synchronization primitive as such in isolation to application logic.

From the previous discussions, it would be clear that the way we do concurrent verification is that
we will have some ghost state. We need to tie this ghost state to the physical state, with the ghost
state transitioning according to a trusted transition system. Now, many applications would require the
physical state to be held in Reader Writer Lock manner, and thus it becomes evident to build a system
to allow sharing the ghost state in such a manner. For this purpose, Seagull also has introduced a
concept of shared variable along with linear variables. Unlike linear variables, these shared variables
allow us to alias the same object (or ghost variable) in a read-only manner. There are rules that let
you turn a linear (exclusively owned) object into a shared (shared borrow) object, and they make sure
that these shared objects expire before exclusive access is regained to the original.

The main API for the reader-writer lock then becomes something like this.

1. On doing a shared acquire, a thread, in turn, gets a linear handle, which allows it to get a shared
version of the data inside the lock.

2. There is a function borrow shared which allows you to get the value inside the lock in a shared
variable on being given a handle (as a shared type, so that you can still call it afterwards) which
represents a sort of permission to get the resource.

3. On calling release, the handle is required to be provided so that you can’t retain the rights of
obtaining the value inside the lock even after calling release.

The correct usage of the above API is also ensured by the linear type system. Notice, since we get, in
return, a linear handle on calling acquire shared and the only way to consume this handle fully will be
to call release on it. Hence, a linear type system ensures the correct usage by requiring the release to
be called after an acquire and the release not before an acquire. Another exciting thing is that once
the linear handle is destroyed, the data inside the lock held by the thread will also be destroyed, as it
was a shared reference.

5



2.12 Need of Sharded State Machine

One might wonder, if we already have memory primitives to enable shared and linear variables, why
would one not verify the Reader Writer Lock with a similar strategy as a spinlock? The authors say
that Rust also has this type-system in it, but still, their Reader Writer Lock has memory-unsafe code
present, and they also run into similar problems if they try to verify the reader-writer lock in such a
manner. They have also provided an unverified reader-writer lock file in rust inside their codebase [5],
where the use of unsafe memory cells is evident.

This leads the authors to develop a new strategy similar to the above-explained strategy. In short, we
would like to develop a sound LTS for this first. Let’s think of how this LTS should look like. Say you
want to store some ghost state into a Reader-Writer lock, and you would want the data to be stored
inside a Cell memory; This means that a thread calling acquire exclusive should get the Permission
token, and the thread calling release exclusive should return back this Permission Token, the thread
calling acquire shared will lead to physically increment a reader count inside the library and in return
should get some linear handle which acts as a token to allow it to call borrow shared and obtain the
data inside the cell in a shared variable. The release shared caller should provide the linear handle
it obtained through acquire to complete the process and should lead to a decrement in reader count
physically.

In conclusion, you can notice that an LTS for this should support the deposition and withdrawal of
ghost tokens (like the permission token above) and should allow transitions to produce a token/handle
shard on calling acquire shared and consuming it on calling release shared. This is just what the guard
protocols are all about. We’re going to define another ghost state (a Sharded State Machine, in par-
ticular), S, with some special rules: it is possible to “deposit” a ghost state into S and “withdraw”
that state back out. Furthermore, it is possible to “borrow” a ghost state from the S-state with-
out actually withdrawing it. The methodology requires the programmer to prove (using invariants
of the Sharded State Machine) that borrowed state always corresponds to some deposited state/token.

So, for example, we could implement the above interface by creating a Sharded State Machine S, with
certain shards enabling borrowing. The shared handle objects could be defined as that state or tokens
corresponding to these states. This way, we can build an LTS corresponding to the functionalities we
want and work on its verification, just like in the first half. This summarises the section on Guard
Protocols in the paper written in a very tough-to-comprehend cryptic style. Enthusiastic readers can
try to map the summary with the section in the original Seagull Paper.

3 Conclusion

This project was an attempt to understand the Seagull Verification Framework. The original paper
was not precisely to the point and might be challenging to comprehend for anyone new to this field.
After reading this report, the main ideas of their work should be better understood. Seagull, through
its sharding strategy and linear type system, gives an optimistic technique which could be used in a
vast range of concurrent systems. It is a general framework, and many concurrent systems could fit
into their verification strategy in a not-so-hard manner. I tried, through this report, to develop an
intuition for their technique and why it should work. One might want to dig deeper into the field of
Concurrent Separation Logic and their prior work on Burrow Logic to understand their methodology
more clearly.

6



4 Acknowledgements

I want to thank Yugesh Kothari, for helping me throughout this project, providing valuable suggestions
and lending his precious time to weekly fruitful discussions. Being completely new to the field of
verification, I would like to emphasize that there were times when I could not see any future for
myself in understanding this framework and its large codebase in Dafny. Thanks to Yugesh, I kept
the motivation to struggle with the framework and finally get something out of it. Next, I would like
to thank Vishal Gupta and the people from RS3 Lab, EPFL for being so welcoming and sharing their
input on my curiosity related to systems and research (in general). Finally, I would like to thank
Prof. Sanidhya Kashyap for providing me with the opportunity of working on this project at RS3
Lab, EPFL, even though I had no prior introduction to this particular field and for providing with
the necessary means for the smooth running of the project.

References

[1] Philip Wadler. “Linear Types can Change the World!” In: Programming Concepts and Methods.
1990.

[2] Peter W. O’Hearn. “Resources, concurrency, and local reasoning”. In: Theoretical Computer Sci-
ence 375.1 (2007). Festschrift for John C. Reynolds’s 70th birthday, pp. 271–307. issn: 0304-3975.
doi: https://doi.org/10.1016/j.tcs.2006.12.035. url: https://www.sciencedirect.
com/science/article/pii/S030439750600925X.

[3] Travis Hance et al. “Storage Systems Are Distributed Systems (so Verify Them That Way!)” In:
Proceedings of the 14th USENIX Conference on Operating Systems Design and Implementation.
OSDI’20. USA: USENIX Association, 2020. isbn: 978-1-939133-19-9.

[4] Travis Hance et al. Burrow: Custom Read/Write Permissions for Custom Ghost State in Con-
current Separation Logic. url: https://www.cylab.cmu.edu/_files/pdfs/tech_reports/
CMUCyLab21002.pdf.

[5] Unsafe Reader-Writer lock implementation in Rust. url: https : / / github . com / rs3lab /

concurrency-verification/blob/seagull-stable/concurrency/rwlock/rwlock_unverified.

rs.

7

https://doi.org/https://doi.org/10.1016/j.tcs.2006.12.035
https://www.sciencedirect.com/science/article/pii/S030439750600925X
https://www.sciencedirect.com/science/article/pii/S030439750600925X
https://www.cylab.cmu.edu/_files/pdfs/tech_reports/CMUCyLab21002.pdf
https://www.cylab.cmu.edu/_files/pdfs/tech_reports/CMUCyLab21002.pdf
https://github.com/rs3lab/concurrency-verification/blob/seagull-stable/concurrency/rwlock/rwlock_unverified.rs
https://github.com/rs3lab/concurrency-verification/blob/seagull-stable/concurrency/rwlock/rwlock_unverified.rs
https://github.com/rs3lab/concurrency-verification/blob/seagull-stable/concurrency/rwlock/rwlock_unverified.rs

	Overview
	Seagull Approach
	Specification
	Abstract View
	Idea of Sharding
	LTS: Localised Transition System
	GSM: Global State Machine
	Abstracting External Interactions
	Connecting with Implementation
	Ownership Concerns
	Seagull Memory Management
	Building a Simple Spin Lock
	Verifying Custom Read/Write Tools
	Need of Sharded State Machine

	Conclusion
	Acknowledgements

