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Question 1

A partition of n objects is a collection of its mutually disjoint subsets, called blocks,
whose union gives the whole set. Let S(n; k1, k2, . . . , kn) denote the number of all par-
titions of n objects with ki i-element blocks (i.e., k1 + 2k2 + · · · + nkn = n). In other
words,

ki = the number of i-element blocks in a partition

Show that S(n; k1, k2, . . . , kn) =
n!

k1!k2! . . . kn!(1!)k1(2!)k2 . . . (n!)kn
.

Solution

Let S denote the set of n objects given in question. Since, ki i-element blocks are
different for different i ∈ [1, n], we can construct distinct partition with ki i-element
blocks by first choosing k1 1-element blocks constructed from n objects of S, then k2

2-element block constructed from left n − 1.k1 objects of S, and lastly kn n-element
block constructed from left objects. Following this construction we can calculate the
number of partitions of given type, with the help of following observation:

Observation 1.1. Number of ways to choose a set of k i-element blocks from set A ⊆ S
s.t. ki ≤ a and all i-element blocks are mutually exclusive and elements of each i-
element block are distinct, is given by

a!

(k!)(i!)k(a− ki)!
, where a = |A|
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Proof. The number of ways of choosing ordered tuple of k i-element blocks from A
= (Number of choosing i elements for 1st i-element block from a elements)(Number

of choosing i elements for 2nd i-element block from left a− i elements). . . (Number of
choosing i elements for kth i-element block from a− (k − 1)i elements)

=

(
a

i

)(
a− i

i

)
. . .

(
a− (k − 1)i

i

)
=

a!

i!(a− i)!

(a− i)!

i!(a− 2i)!

(a− (k − 1)i)!

i!(a− ki)!

=
a!

(i!)k(a− ik)!

Since, set of elements of ordered tuple will remain identical for all permutations of
sets of tuple,

number of sets =
number of tuples

number of permutations

=

a!
(i!)k(a−ik)!

k!

=
a!

(k!)(i!)k(a− ik)!

S(n; k1, k2, . . . , kn)= (No. of ways of choosing k1 1-element block fromn elements)(No.
of ways of choosing k2 2-element block from n−k1 elements). . . (No. of ways of choos-
ing kn n-element block from n−

∑n−1
j=1 kj)

= (
n!

(k1!)(1)k1(n− 1.k1)!
)(

(n− 1.k1)!

(k2!)(2!)k2(n− 1.k1 − 2.k2)!
) . . . (

(n−
∑n−1

j=1 kj
∑

)!

(kn!)(n!)kn(n−
∑n

j=1 kj)!
)

(Using Observation 1.1)

=
n!

k1!k2! . . . kn!(1!)k1(2!)k2 . . . (n!)kn
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Question 2

Show that for every k, the product of any k consecutive natural numbers is divisible
by k!.

Solution

It’s trivial to see that the statement is true for k = 0, as product of zero consecutive
natural numbers is zero and hence it is divisible by k! = 1. Now, we will prove the
statement for k ∈ N. Consider the number of possible ways of choosing k obejcts
from n + k objects where n ∈ W and k ∈ N. We have the fact that n + k ≥ k for all
n ∈ W and k ∈ W and hence the number of ways of choosing k objects from n + k

objects would be a natural number. Let’s define these many number of ways as a
function f : W× N→ N such that

f(n, k) =

(
n+ k

k

)
(2.1)

Let us also define another function p : W × N → N which denotes the product of k
consecutive natural numbers after a non-negative integer n as

p(n, k) =
k∏

i=1

(n+ i) (2.2)

Now, notice the fact that we can also write f(n, k) equivalently as,

f(n, k) =
(n+ k)!

n!k!

=

(
(n+ k)!

n!

)
1

k!

=

(
k∏

i=1

(n+ i)

)
1

k!

=
p(n, k)

k!

⇒ p(n, k) = k! ∗ f(n, k)
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The last equation and the fact that f(n, k) ∈ N implies that k! divides p(n, k) for all
n ∈W and k ∈ N. Hence Proved.
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Question 3

Show that the number of pairs (A,B) of distinct subsets of {1, 2, . . . , n}with A ⊂ B is
3n − 2n.

Solution

Let S be the set containing the first n natural numbers or

S = {1, 2, . . . , n} (3.1)

Consider the process of forming two subsets A and B out of set S.

Observation 1: Number of pairs (A,B) of distinct subsets of S with A ⊂ B is equal
to the number of pairs (A,B) with A ⊆ B subtracted with number of pairs (A,B) with
A = B.

Proof. This observation is direct result of the fact that the set of pairs (A,B) with
A ⊆ B equals the union of the set of pairs (A,B) with A ⊂ B and the set of pairs (A,B)

with A = B. If we consider the three sets discussed above as S1, S2 and S3. We have

S1 = S2 ∪ S3 (3.2)

S2 ∩ S3 = ∅ (3.3)

Using (3.2) and (3.3), we get

n(S1) = n(S2) + n(S3)− n(S2 ∩ S3)

n(S1) = n(S2) + n(S3)

where n(S) represents the cardinality of the set S. Therefore, the above equation im-
plies that

n(S2) = n(S1)− n(S3) (3.4)

This is exactly what is the statement of Observation 1. Hence Proved.

Now, to proceed further in the proof we need to find the number of pairs (A,B) with
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A ⊆ B and the set of pairs (A,B) with A = B, which are easier to find. We will present
a construction strategy for finding the number of such pairs. We will try constructing
pairs of subsets with these properties and find how many we can construct.
Notice, the fact that each element of S has the following four options available for it.

1. Either it is goes in A and not in B.

2. Either it is goes in B and not in A.

3. It goes in both in A and B.

4. It goes neither in A nor in B.

Consider an arbitrary element of S , say x. Now, for the condition A ⊆ B to be true, all
options except (1) can be true, hence this element has 3 options available for it. And
since x was any arbitrary element so every element in set S has 3 options available
for it. Hence the number of pairs (A,B) with A ⊆ B are equal to 3n.
Similarly, for the condition A = B to be true, the element x has all options available
except (1) and (2), hence for this case this element has 2 options available for it. And
since xwas again any arbitrary element, so every element in setS has 2 options avail-
able for it. Hence, the number of such pairs are 2n.

Now, using Observation 1 we can say that the required the number of pairs is the
subtraction of the number of pairs found above or 3n − 2n. Hence Proved.
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Question 4

There is a set of 2n people (n males and n females). A good party is a set with the
same number of males and females. How many ways are there to build such a good
party?

Solution

In each valid choosing of a good party out of 2n people, let us assume there are i men
and i women. Since the number of men and women both vary for 0 to n, the value of
i also varies between 0 and n.
Then, a good party is described by i men and i women in the set (0 ≤ i ≤ n) and
n − i men and n − i women not in the set but belonging to the universal set of all
people. Now, choosing the i men/women also leaves us with only 1 way to choose
the remaining n− i men/women who are not in the good party.
So, to define a good party, we choose i men to include in the set and n − i women to
not include in the set (0 ≤ i ≤ n). So, we choose i + (n − i) = n people out of which
i are men whom we place in our good party and n − i women whom we reject / we
choose the i women among the rest n people whom we haven’t chosen explicitly.
This means, sum of all the above possible cases is the answer that we seek.
In other words, we need to count the number of ways we can choose i + (n − i) = n

people from 2n people, which is precisely
(
2n
n

)
.
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Question 5

1. Show that the number of integer solution to the equation

x1 + x2 + · · ·+ xn = k

under the condition that xi ≥ 0 for all i is
(
n+k−1

k

)
.

2. Let n and k ≥ l be positive integers. How many different integer solutions are
there to the equation x1 + x2 + · · ·+ xn = k such that 0 ≤ xi < l for all i.

Solution

1 5.1

Consider k identical boxes and n− 1 identical bars. Since, we need n integers, we try
to create n partitions by choosing n− 1 positions for n− 1 bars.
Each time we choose n − 1 positions for n − 1 bars, we create n partitions which in
total have k boxes.
This arrangement can be described as perfect bijection to our original problem by
defining the number of boxes in the ith partition to be the non-negative integer xi ,
0 ≤ xi ≤ k.
Since when two partitions are adjacent, the number of boxes is 0 which is the min-
imum possible, and when there are k boxes in a a partition while others are empty
which is the maximum value possible for the ith integer xi, this also satisfies the con-
straint imposed on the values of xi.
So, we there is in total k + n− 1 positions where we may place boxes or bars on each
position. Each such choice is a unique configuration. Hence, the number of ways to
choose n− 1 positions for n− 1 bars is

(
n+k−1
n−1

)
=
(
n+k−1

k

)
.
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2 5.2

As defined in the lectures, Principle of Inclusion and Exclusion:

n⋃
i=1

Ai =
n∑

i=1

|Ai|−
∑

1≤i<j≤n

|Ai∩Aj|+
∑

1≤i<j<k≤n

|Ai∩Aj∩Ak|− . . . +(−1)n−1 · |A1∩A2 . . . An|

Obviously, if n · l < k, there are no solutions. Otherwise, we use the Principle of Inclu-
sion and Exclusion to count number of times exactly 0 integers violate the criterion
using the formula derived above which only counts the cases with atleast some num-
ber of violations as described below .

Formally, we want to find |S| where S = {{x1, x2 . . . xn} | 0 ≤ xi < l ∀ 1 ≤ i ≤ n}
and U = {{x1, x2 . . . xn} | 0 ≤ xi ≤ k ∀ 1 ≤ i ≤ n}. Also let Vi be the set containing
all the sets which have at least i violations; Vi = {{x1, x2 . . . xn} and |A| = i s.t. A =

{u1, u2, . . . ui}, 1 ≤ uj ≤ n, xuj
≥ l ∀ 1 ≤ j ≤ i}. We note that V0 = U .

Consider the cases where atleast i integers : a1 . . . ai , 1 ≤ ak ≤ n, 1 ≤ k ≤ i vio-
late the given constraint. In such a case, we initially dedicate a value of l each of athi
partition and distribute all the boxes to partitions with k − i · l whilst ensuring that
k − i · l > 0 =⇒ 0 ≤ i ≤ k

l
, i ∈ N ∪ {0}.

The number of such cases when we fix the i integers is
(
n+k−i·l−1

n−1

)
. The number of

ways to choose i integers is
(
n
i

)
. This implies , |Vi| =

(
n
i

)
·
(
n+k−i·l−1

n−1

)
.

So, total number of ways is |S| = |U | − |V1| + |V2|...(−1)b
k
l
c · |Vb k

l
c| =

∑
0≤i≤b k

l
c
(−1)i · |Vi| =∑

0≤i≤b k
l
c
(−1)i ·

(
n
i

)
·
(
n+k−i·l−1

n−1

)
by the principle of inclusion and exclusion.
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