CS201

Mathematics For Computer Science Indian Institute of Technology, Kanpur

Group Number: 5 Devanshu Singla (190274), Sarthak Rout (190772), Yatharth Goswami (191178)

Date of Submission: November 23, 2020

Question 1

1. Find the generating function for the following recurrence relation.

$$
f(n+1) = \begin{cases} 1 & \text{if } n+1 = 0\\ \sum_{i=0}^{n} f(i) f(n-i) & \text{if } n \ge 0 \end{cases}
$$

2. Using the generating function and generalised binomial theorem for $\sqrt{1+y}$, find a closed form for $f(n)$.

Solution

1 Part I

Let $G(x) = \sum^{\infty}$ $i=0$ $f(i)x^i$. According to the question statement, $f(0) = 1$. Consider also, $G(x) = \sum^{\infty}$ $j=0$ $f(j)x^j$. Then,

$$
(G(x))^{2} = \sum_{i=0}^{\infty} f(i)x^{i} \cdot \sum_{j=0}^{\infty} f(j)x^{j} = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} f(i)f(j)x^{i+j}
$$

Let $i + j = n$.

$$
(G(x))^{2} = \sum_{n=0}^{\infty} (\sum_{i=0}^{n} f(i)f(n-i))x^{n} = \sum_{n=0}^{\infty} f(n+1)x^{n} (Eqn 1.1)
$$

We also have,

$$
G(x) = f(0) + xf(1) + x^2 f(2) \cdots \implies \frac{G(x) - f(0)}{x} = f(1) + xf(2) + x^2 f(3) \cdots = \sum_{n=0}^{\infty} f(n+1)x^n
$$

So, from Eqn 1.1,

$$
(G(x))^{2} = \frac{G(x) - f(0)}{x} = \frac{G(x) - 1}{x}
$$

$$
\implies x(G(x))^{2} - G(x) + 1 = 0
$$

$$
\implies G(x) = \frac{1 \pm \sqrt{1 - 4x}}{2x}
$$

The denominator vanishes at $x = 0$. We also have $G(0) = f(0) = 1$. This implies, we must choose $-$ sign, so that the expression is of the form $\frac{0}{0}$ and not $\frac{\infty}{0}$, which allows us to manipulate expressions to remove singularities. Therefore,

$$
G(x) = \frac{1 - \sqrt{1 - 4x}}{2x} = \frac{2}{1 + \sqrt{1 + 4x}}
$$

2 Part II

We have generalised binomial theorem where n is any complex number :

$$
(x+y)^n = \sum_{n=0}^{\infty} \binom{n}{k} x^k y^{n-k}
$$

Using generalised binomial theorem for real exponent $\frac{1}{2}$ and $x=1$, we have

$$
\sqrt{1+y} = \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n} y^n
$$

\n
$$
\implies \sqrt{1-4x} = \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n} (-4)^n x^n = 1 + \sum_{n=1}^{\infty} \binom{\frac{1}{2}}{n} (-4)^n x^n
$$

\n
$$
1 - \sqrt{1-4x} = -\sum_{n=1}^{\infty} \binom{\frac{1}{2}}{n} (-4)^n x^n = -\sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n+1} (-4)^{n+1} x^{n+1}
$$

\n
$$
\implies \frac{1 - \sqrt{1-4x}}{2x} = \frac{-1}{2} \cdot \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n+1} (-4)^{n+1} x^n
$$

Simplifying the expression for $\binom{\frac{1}{2}}{n+1}$ further,

$$
\binom{\frac{1}{2}}{n+1} = \frac{1}{(n+1)!} \cdot \frac{1}{2} \frac{-1}{2} \frac{-3}{2} \dots \frac{-(2n-1)}{2}
$$

$$
= \frac{(-1)^n 1 \cdot 3 \dots (2n-1)}{(n+1)!}
$$

$$
= \frac{(-1)^n 1 \cdot 3 \dots (2n-1)}{(n+1)!} \cdot \frac{2 \cdot 4 \cdot 6 \dots (2n)}{2^n n!}
$$

$$
= \frac{(-1)^n 1 \cdot 2 \cdot 3 \cdot 4 \dots (2n-1) \cdot (2n)}{2^n (n+1)! n!}
$$

$$
= \frac{(-1)^n}{2^{n+1}} \frac{(2n)!}{2^n n! (n+1)!} = \frac{(-1)^n}{2^{n+1}} \frac{(2n)!}{2^n n! n! (n+1)}
$$

$$
= \frac{(-1)^n}{2 \cdot 4^n (n+1)} {2^n}
$$

This implies that,

$$
\frac{1 - \sqrt{1 - 4x}}{2x} = \frac{-1}{2} \cdot \sum_{n=0}^{\infty} { \frac{1}{2} \choose n+1} (-4)^{n+1} x^n = \frac{-1}{2} \sum_{n=0}^{\infty} (-4)^{n+1} \cdot \frac{(-1)^n}{2 \cdot 4^n (n+1)} {2n \choose n} x^n
$$

$$
= \sum_{n=0}^{\infty} (-1)^{2n+2} \cdot \frac{4}{2 \cdot 2} \cdot \frac{1}{n+1} \cdot {2n \choose n} x^n = \sum_{n=0}^{\infty} \frac{1}{n+1} \cdot {2n \choose n} x^n
$$

Therefore, the closed form for $f(n)$ is,

$$
f(n) = \frac{1}{n+1} \cdot \binom{2n}{n}
$$

Define *n*-varaiate polynomials P_d and Q_d as:

$$
P_d(x_1, x_2, \dots, x_n) = \sum_{\substack{J \subseteq [1,n] \\ |J| = d}} \prod_{r \in J} x_r
$$

$$
Q_d(x_1, x_2, \dots, x_n) = \sum_{\substack{0 \le i_1, i_2, \dots, i_n \le d \\ i_1 + i_2 + \dots + i_n = d}} \prod_{r=1}^n x_r^{i_r},
$$

and $P_0(x_1, x_2, \ldots, x_n) = 1 = Q_0(x_1, x_2, \ldots, x_n)$. Show that for any $d > 0$:

$$
\sum_{m=0}^{d} (-1)^m P_m(x_1, x_2, \dots, x_n) Q_{d-m}(x_1, x_2, \dots, x_n) = 0.
$$

Solution

Consider the polynomial $F(y) = \prod_{i=1}^{n} (1 - x_i y)$.

It can be clearly seen that coefficient of y^k is the sum of all such terms obtained by multiplying the second term of each i-th factor $(1-x_iy)$ which is $-x_iy$, which is linear in y, from any k mono-polynomials being multiplied and first term i.e. 1 from rest of the mono-polynomials.

Note: Here, a mono-polynomial is a factor in the expression for $F(y)$. Ex: $(1-x_2y)$

$$
\therefore \text{ coefficient of } y^k \text{ in } F(y) = \sum_{\substack{J \subseteq [1,n] \\ |J| = k}} \prod_{r \in J} (-x_r)
$$

$$
= (-1)^k \sum_{\substack{J \subseteq [1,n] \\ |J| = k}} \prod_{r \in J} (x_r)
$$

$$
= (-1)^k P_k(x_1, x_2, \dots, x_n)
$$

Functional equation for $\frac{1}{F(y)}$:

$$
\frac{1}{F(y)} = \prod_{i=1}^{n} \frac{1}{1 - x_i y}
$$

$$
= \prod_{i=1}^{n} \sum_{j\geq 0} (x_i^j y^j)
$$

=
$$
\sum_{d\geq 0} (\sum_{\substack{0 \leq i_1, i_2, \dots, i_n \leq d \\ i_1 + i_2 + \dots + i_n = d}} \prod_{r=1}^{n} x_r^{i_r} y^d
$$

=
$$
\sum_{d\geq 0} Q_d(x_1, x_2, \dots, x_n) y^d
$$

Multiplying both of these functional equations,

$$
F(y)\left(\frac{1}{F(y)}\right) = \left(\sum_{d\geq 0} (-1)^d P_d(x_1, x_2, \dots, x_n) y^d\right) \left(\sum_{d\geq 0} Q_d(x_1, x_2, \dots, x_n) y^d\right)
$$

$$
1 = \sum_{d\geq 0} \left(\sum_{m=0}^d (-1)^m P_m(x_1, x_2, \dots, x_n) Q_{d-m}(x_1, x_2, \dots, x_n)\right) y^d
$$

Equating powers of y on both sides,

$$
\implies \sum_{m=0}^{d} (-1)^m P_m(x_1, x_2, \dots, x_n) Q_{d-m}(x_1, x_2, \dots, x_n) = 0, \text{ for } d > 0
$$

1. Let $\alpha \in \mathbb{R}$ and N be a natural number. Using pigeon-hole principle, show that there exists integers p and q such that $1 \le q \le N$ and

$$
|q\alpha - p| \leq \frac{1}{N}
$$

2. Let $\alpha_1, \alpha_2, \ldots, \alpha_n \in R$ and N be a natural number. Using pigeon-hole principle, show that there exists integers p_1, p_2, \ldots, p_n, q such that $1 \le q \le N^n$ and for all $i \in \{1, ..., n\}$

$$
|\alpha_i - \frac{p_i}{q}| \le \frac{1}{q^{1+1/n}}
$$

Solution

3.1

Let us split the interval $\big\lceil 0,1 \big\rceil$ into N equal sized intervals:

$$
\left[0, \frac{1}{N}\right), \left[\frac{1}{N}, \frac{2}{N}\right) \dots \left[\frac{N-1}{N}, 1\right)
$$

Consider, $N+1$ numbers, 0, α , 2α \dots $N\alpha$. There fractional part lies in the interval $\big[0,1\big).$ There are $N + 1$ real numbers (not necessarily all distinct) and N intervals, hence, by **Pigeonhole Principle** two of the numbers must have their fractional part in the same interval.

Hence, for some non-negative integers a and b s.t. $0 \le a, b \le N$ and $a > b$ without a loss of generality, the difference of fractional parts must be less than $\frac{1}{N}$;
;

$$
\implies |\{a\alpha\} - \{b\alpha\}| < \frac{1}{N}
$$
\n
$$
\implies |\left(a - b\right)\alpha - \left(\lfloor a\alpha \rfloor - \lfloor b\alpha \rfloor\right)| < \frac{1}{N}
$$

Then, let $q = (a - b)$ and $p = (|a\alpha| - |b\alpha|)$. As $0 \le b < a \le N$, $0 < a - b \le N \implies 1 \le a - b \le N$. Hence, $1 \le q \le N$ and we have two integers, p and q satisfying the given requirement. As

$$
\frac{1}{q^{\frac{1}{n}}} \geq \frac{1}{N}
$$

$$
\Longleftrightarrow \frac{1}{qN} \leq \frac{1}{q^{1+\frac{1}{n}}}
$$

Therefore, we must show that

$$
| \alpha_i - \frac{p_i}{q} | < \frac{1}{qN} \le \frac{1}{q^{1 + \frac{1}{n}}}
$$

which will imply

$$
\mid \alpha_i - \frac{p_i}{q}\mid < \frac{1}{q^{1+\frac{1}{n}}}
$$

This implies we must show that,

$$
\mid q\alpha_i - p_i \mid ~ < ~ \frac{1}{N}
$$

for all such p_i and q. Let A be the set of N intervals defined (also in the previous part) by partitioning $[0, 1)$ into N equal parts. That is,

$$
A = \{ [0, \frac{1}{N}), [\frac{1}{N}, \frac{2}{N}) \dots [\frac{N-1}{N}, 1) \}
$$

For a integer t, consider $\{I : \{t\alpha_i\} \in I\}$ a set of n intervals where $I \in A$. Let it be referred as a n**-tuple** of intervals.

Then, we have N^n possibilities of the *n*-tuple.

Consider, $N^n + 1$ integers, from 0 to N^n . For each of them, we define such an n-tuple (which are not necessarily distinct).

By **Pigeonhole Principle**, as we have N^n+1 integers and only N^n choices for intervals, two integers, say x and y must have the same n-tuple where $0 \le x, y, \le N^n$. Without a loss of generality, we may assume $x > y$.

As both of the *n*-tuple belong to the same interval, for each i, $\{x\alpha_i\}$ and $\{y\alpha_i\}$ differ by no more than $\frac{1}{N}$.

$$
\implies | \{x\alpha_i\} - \{y\alpha_i\} | < \frac{1}{N} \,\forall \, 1 \le i \le n
$$

$$
\implies |(x-y)\alpha_i - (x\alpha_i) - (y\alpha_i)| < \frac{1}{N}
$$

Let $q = x - y$. As $x > y$, $q > 0$ and as $0 < y < x < N^n$, we have, $-N^n \le q \le N^n$. Hence, $0 \le q \le N^n$. Also, let $p_i = (\lfloor x\alpha_i \rfloor - \lfloor y\alpha_i \rfloor)$.

Therefore, we obtain p_i and q where $1 \leq i \leq n$ where

$$
| q\alpha_i - p_i | < \frac{1}{N}
$$

as required.

Give a proof for Ramsey's theorem for general case.

Solution

The general case of Ramsey's theorem states that for any $c, n_1, n_2, \ldots, n_c, k \geq 1$, there exists a number $N(n_1, n_2, \ldots, n_c, k) > 0$ such that for any set X with $|X| \ge N(n_1, n_2, \ldots, n_c, k)$, and any mapping $f: X^k \mapsto \{1, 2, ..., c\}$, there exists a $i, 1 \le i \le c$ and a subset $Y \subseteq X$, $|Y| = n_i$, with $f(Y^k) = i$.

Theorem 4.1. [Strong Form of Pigeon Hole Principle] Let q_1, q_2, \ldots, q_n be positive integers. If

 $q_1 + q_2 + \cdots + q_n - n + 1$

objects are put into *n* boxes, then either the 1st box contains atleast q_1 objects, or the 2nd box contains at least q_2 objects, ..., the nth box contains at least q_n objects.

Proof. Suppose, it is not true and the *ith* box contains at most $q_i - 1$ objects, $i =$ $1, 2, \ldots, n$. Then the total number of objects contained in the n boxes can be atmost

$$
(q_1-1)+(q_2-1)+\cdots+(q_n-1) = q_1+q_2+\cdots+q_n-n,
$$

which is one less than the number of objects distributed. This results in a contradiction. \Box

Proof. Let us introduce a new symbol $R_k(n_1, n_2, \ldots, n_c)$ as the smallest value of such a number $N(n_1, n_2, \ldots, n_c, k)$ as referred in the definition. We will try to prove the ramsey's theorem using an induction on k. For $k = 1$, we can choose $R_1(n_1, \ldots, n_c)$ $n_1 + n_2 + \cdots + n_c - c + 1$, and this when used with **Theorem 4.1** will imply that there will exist a set Y with cardinality atleast n_i for some i and for which all elements will be mapped to i. Hence, the claim is true for $k = 1$. In the induction step, suppose that the claim is already true for numbers upto $k - 1$.

For proving claim for k, we will use strong induction on c for k. For $c = 1$, it is trivially true by selecting any $Y \subseteq X, |Y| = n_1$. Suppose that the claim is true for $k, \forall c \leq r$ for some r, where $r \geq 1$. For $r = 1$, or $c = 1$, it has been proved above.

For proving claim for r, we will now induct on $n_1 + n_2 \cdots + n_r$ for the rest of the proof. Also, notice the fact that an implicit condition present in the theorem is that $k \leq min\{n_1, n_2, \ldots, n_c\}$. So, for handling the base case, we take $n_i = k$ for some i. We observe that if $n_i = k$ then, $R_k(n_1, n_2, \ldots, n_c) = R_k(n_1, \ldots, n_{i-1}, n_{i+1}, \ldots, n_r)$ by using the fact that either we will choose the color i or not. If we choose color i , then only k vertices are enough to find a Y of size k such that any arbitrary mapping f maps these k vertices to the color i , otherwise if we are not going to use the color i , then the minimum number of vertices would be same as $R_k(n_1, \ldots, n_{i-1}, n_{i+1}, \ldots, n_r)$. Now, since the term on the right hand side is finite by induction hypothesis, so the cases with $n_i = k$ have been dealt with. Now, we will try to show that

 $R_k(n_1, n_2, \ldots, n_r) \leq R_{k-1}(R_k(n_1-1, \ldots, n_r), \ldots, R_k(n_1, \ldots, n_i-1, \ldots, n_r), \ldots, R_k(n_1, \ldots, n_r-1)) + 1$

We know that the right hand side is finite by the induction hypothesis on sum of k_i and also the Ramsey theorem for values less than k . Let the value of right hand side of the above equation be S. Let us choose a set X of cardinality S and an arbitrary mapping $f: X^k \mapsto \{1, 2 \ldots, r\}$. Let $\{A\}$ be an element of X. Let us define another set $X' = X - \{A\}$. Therefore $|X'| = |X| - 1$. Let us choose a mapping $g : (X')^{k-1} \mapsto$ $\{1, 2, \ldots, r\}$ such that g maps any $k-1$ sized subset x' of X' to the same number which f maps $x' \cup \{A\}$ to.

Since $|X'| = R_{k-1}(R_k(n_1-1,\ldots,n_r),\ldots,R_k(n_1,\ldots,n_i-1,\ldots,n_r),\ldots,R_k(n_1,\ldots,n_r-1)).$ therefore by definition of Ramsey's theorem, we can say that $\exists i$ such that $\exists Y \subseteq X'$ and $|Y| = R_k(n_1, \ldots, n_i - 1, \ldots, n_r), g(Y^{k-1}) = i.$

Now, using definition of Ramsey's theorem on this newly defined set Y with $|Y| =$ $R_k(n_1,\ldots,n_i-1,\ldots,n_r)$, we can say that $\exists j$ such that either $j\neq i$ and $\exists Z \subseteq Y, |Z| =$ $n_j,~f(Z^k) = \{j\},$ in which case we are done or $j = i$ in which case $\exists Z \subseteq Y,~|Z| = i$ $n_i-1, f(Z^k) = \{i\}.$ Now in this case, since $Z \subseteq Y$, $g(Y^{k-1}) = \{i\} \implies g(Z^{k-1}) = \{i\}$. By definition of g, this implies that $g(z) = f(z \cup \{A\}) = \{i\}$ $\forall z \in \mathbb{Z}^{k-1}$. If we define a set $Z' = Z \cup \{A\}$, then, we have $f(z) = \{i\}$ $\forall z \in (Z')^k$ and $|Z'| = n_i$. Therefore, we can say that by choosing a set X with cardinality S , we can find for any arbitrary mapping f , a subset Y' with cardinality n_i and $f((Y')^k) = i$ for some $i \leq r$ and since $R_k(n_1, \ldots, n_r)$ is smallest such cardinality of set X , therefore it would be less than or equal to S which proves the above inequality and hence the finiteness of $R_k(n_1, n_2, \ldots, n_r)$ and hence the theorem in general. \Box

Consider the set $S_n = \{f | f : [n] \to [n] \text{ and } f \text{ is a bijection}\}$ which contains all bijective mapping from [n] to [n] where $[n] = \{1, 2, 3, ..., n\}$. In other words, any $f \in S_n$ simply permutes the elements in $[n]$.

1. A mapping $f \in S_n$ is called a **transposition** if there exists (i, j) such that $0 \leq i \neq j$ $i \leq n$ and

$$
f(k) = \begin{cases} j & \text{if } k = i \\ i & \text{if } k = j \\ k & \text{otherwise} \end{cases}
$$

Show that any $g \in S_n$ can be written as a finite product $f_1 \circ f_2 \circ \cdots \circ f_m$ where each f_i is a transposition in S_n .

2. The **parity** of a function f in S_n denoted by $N(f)$ is defined as the number of pairs (i, j) such that $1 \leq i < j \leq n$ and $f(i) > f(j)$. Show that

$$
N(f) \equiv m \ (\ mod \ 2)
$$

where $f = g_1 \circ g_2 \circ \cdots \circ g_m$ and each g_i is a transposition in S_n .

Solution

Consider the adjacent transpositions $e_i \in S_n$, $1 \leq i < n$ be defined as:

$$
e_i(x) = \begin{cases} i+1 & \text{if } x = i \\ i & \text{if } x = i+1 \\ x & \text{otherwise} \end{cases}
$$

Lemma 5.1. If there exist a pair (i, j) s.t. $1 \le i \le j \le n$ and $f(i) > f(j)$, then there exists a pair $(k, k + 1)$ s.t. $1 \le k \le n$ and $f(k) > f(k + 1)$.

Proof. Let us assume there does not exist any pair $(k, k + 1)$ s.t. $i \le k \le j$ and $f(k)$ $f(k + 1)$.

 $\implies f(k) \leq f(k+1), \forall k \text{ s.t. } i \leq k < j.$

 $\implies f(i) \leq f(i+1) \leq \cdots \leq f(j-1) \leq f(j)$ $\implies f(i) \leq f(j)$, which is clearly contradiction.

Lemma 5.2. If $N(f) = 0$ for some $f \in S_n$, then $f(x) = Id(x)$ (identity function).

Proof. As $N(f) = 0$, it implies there does not exist any pair (i, j) such that $1 \le i \le j \le n$ and $f(i) > f(j)$.

 $\implies f(i) \leq f(j) \forall i, j \text{ s.t. } 1 \leq i < j \leq n.$

 \implies f is increasing function.

Since f is both increasing and onto(bijective), it implies $f(x)$ needs to be identity function. \Box

Inverse of lemma 5.2 is also true as can be easily seen $\forall i, j$ s.t. $1 \leq i < j \leq n \implies$ $Id(i) < Id(j), \implies N(Id) = 0.$

Lemma 5.3. If $N(f) > 0$ for some $f \in S_n$, then there exist an adjacent transposition e_i for some *i* s.t. $N(e_i \circ f) = N(f) - 1$

Proof. $N(f) > 0 \implies$ there exist a pair (i, j) s.t. $1 \le i < j \le n$ and $f(i) > f(j)$

 \implies there exist a pair $(k, k+1)$ s.t. $1 \leq k < n$ and $f(k) > f(k+1)$. (from lemma 5.1).

Let us call the a pair (i, j) a bad pair w.r.t. $f \in S_n$ if $1 \leq i < j \leq n$ and $f(i) > f(j)$. Consider the adjacent transposition e_k . Consider the following disjoint cases of pairs (i, j) s.t. $1 \leq i < j \leq n$:

1. Case: $i, j \in [1, n] - \{k, k+1\}$

$$
f(i) > f(j) \implies e_k(f(i)) > e_k(f(j))
$$
 and $f(i) \le f(j) \implies e_k(f(i)) \le e_k(f(j))$

Hence, the number of bad pairs are same w.r.t. f and $e_i \circ f$ in (i, j) .

2. Case: $i \in \{k, k+1\}, n \geq j \geq k+1$

 $f(k) > f(j) \implies e_k(f(k+1)) > e_k(f(j))$ and $f(k) \leq f(j) \implies e_k(f(k+1)) \leq j$ $e_k(f(j))$

So, the number of bad pairs in (k, j) w.r.t f are equal to number of bad pairs in $(k+1, j)$ w.r.t. $e_i \circ f$.

Similarly, $f(k + 1) > f(j) \implies e_k(f(k)) > e_k(f(j))$ and $f(k + 1) \le f(j) \implies$ $e_k(f(k)) \leq e_k(f(j))$

Hence, the number of bad pairs in $(k + 1, j)$ w.r.t f are equal to number of bad pairs in (k, j) w.r.t. $e_i \circ f$.

 \Box

Hence, the number of bad pairs are same w.r.t. f and $e_i \circ f$ in (i, j) .

3. Case: $1 \le i \le k, j \in \{k, k+1\}$

 $f(i) > f(k) \implies e_k(f(i)) > e_k(f(k+1))$ and $f(i) \leq f(k) \implies e_k(f(i)) \leq e_k(f(k+1))$ So, the number of bad pairs in (i, k) w.r.t f are equal to number of bad pairs in $(i, k + 1)$ w.r.t. $e_i \circ f$.

Similarly, $f(i) > f(k+1) \implies e_k(f(i)) > e_k(f(k))$ and $f(i) \le f(k+1) \implies$ $e_k(f(i)) \leq e_k(f(k))$

Hence, the number of bad pairs in $(i, k + 1)$ w.r.t f are equal to number of bad pairs in (i, k) w.r.t. $e_i \circ f$.

Hence, the number of bad pairs are same w.r.t. f and $e_i \circ f$ in (i, j) .

4. Case: $i = k, j = k + 1$

Since, $f(k) > f(k+1) \implies e_i(f(k)) \leq e_i(f(k+1)), (i, j) = (k, k+1)$ is a bad pair w.r.t. f but not w.r.t. $e_i \circ f$.

Hence, except the last case the number of bad pairs w.r.t f and $e_i \circ f$ were same but in last case f had one more bad pair than $e_i \circ f$. Since, by definition of bad pairs, $N(f)$ = number of bad pairs in $f \implies N(e_k \circ f) = N(f) - 1$. \Box

Lemma 5.4. For a transposition f, transpositioning i and j where $i, j \in [1, n]$ and $i < j$, $N(f) = 2(i - j) - 1.$

Proof. Consider following mutually exclusive cases of pairs (x, y) s.t. $x, y \in [1, n]$ and $x < y$:

1. Case: $x < i$

for $y \notin \{i, j\}, x \leq y \implies f(x) \leq f(y)$, hence no bad pairs. for $y = j, x < i \implies f(x) < f(j) \implies f(x) < f(y)$, hence no bad pair Total bad pairs = 0.

2. Case: $x = i$

for $i < y < j$, $y < j \implies f(y) < f(i) \implies f(y) < f(x)$, hence $j - i - 1$ bad pairs. for $y = j, i < j \implies f(j) < f(i) \implies f(y) < f(x)$, hence 1 bad pair. for $j < y < n, j < y \implies f(i) < f(y) \implies f(x) < f(y)$, hence no bad pairs. So, total bad pairs = $i - j$.

3. Case: $i < x < i$

for $y \neq j, x \lt y \implies f(x) \lt f(y)$, hence no bad pairs. for $y = j, i < x \implies f(j) < f(x) \implies f(y) < f(x)$, hence $j - i - 1$ bad pair.

4. Case: $x \geq j$

for
$$
x = j, i < y \implies f(j) < f(y) \implies f(x) < f(y)
$$
, hence no bad pair.

for $x > j$, $x < y \implies f(x) < f(y)$, hence no bad pair.

Hence, total number of bad pairs, $N(f) = 2(j - i) - 1 \implies N(f) \equiv 1 (mod 2)$ \Box

Lemma 5.5. Let e_k be an adjacent transposition for some k and let $f \in S_n$. Then, $N(e_k \circ f) - N(f) \equiv 1 \pmod{2}$.

Proof. While proving lemma 5.3, it can be seen that in the cases 1-3, the argument holds for any general $f \in S_n$ and for e_k , for any k s.t. $1 \leq k < n$. Hence, the number of bad pairs are same for cases 1-3 w.r.t. f and $e_k \circ f$

For the case $i = k$, $j = k + 1$, if $f(i) < f(j) \implies (e_k \circ f)(j) < (e_k \circ f)(i) \implies N(f) =$ $N(e_k \circ f) - 1$ or if $f(i) > f(j) \implies (e_k \circ f)(i) < (e_k \circ f)(j) \implies N(f) = N(e_k \circ f) + 1$.

$$
\implies N(f) - N(e_k \circ f) \equiv 1 \text{ (mod 2)}
$$

5.1

It can be seen that that the maximum number of bad pairs in any $g \in S_n$ are strictly less than the number of pair (i, j) s.t. $i < j$, hence parity of g is finite.

By lemma 5.3, ∃ adjacent transposition $h_1 = e_i$ for some i s.t. $N(e_i \circ f) = N(f) - 1$. Let $g_1 = e_1 \circ f$. Similarly, for g_{k-1} , $\exists h_k = e_i$ for some i s.t. $N(g_k) = N(g_{k-1}) - 1$, where $g_k = h_k \circ g_{k-1}$, for $1 < k \le m$ where $N(g_m) = 0$. Since $N(g_k) = N(g_{k-1}) - 1$ and $N(g_1) = 0$ $N(g) - 1 \implies N(g_i) = N(g) - i \implies N(g_m) = N(g) - m = 0$ (by inverse of lemma 5.3) $\implies m = N(q)$.

Since, $N(g_m)=0 \implies g_m=Id$ (by lemma 5.2). It can also be easily seen that for any adjacent transposition $e, e(e(x)) = x, \forall x \implies e \circ e = Id$.

As,
$$
g_m = h_m \circ g_{m-1}
$$

$$
= h_m \circ h_{m-1} \circ g_{m-2}
$$

\n
$$
= h_m \circ \cdots \circ h_1 \circ g
$$

\n
$$
\implies h_1 \circ \cdots \circ h_m \circ Id = h_1 \circ \cdots \circ h_m \circ h_m \circ \cdots \circ h_1 \circ g \qquad (\mathbf{h}_m = Id)
$$

\n
$$
\implies h_1 \circ \cdots \circ h_m = g
$$

Hence, there exists transpositions $f_i = h_i$ for s.t. $g = f_1 \circ f_2 \circ \cdots \circ f_m$

5.2

As a corollary of part 5.1, it can be seen that any transposition, say g transpositioning i and j, can be represented as a product of $m = N(g)$ adjacent transpositions, say e_1, e_2, \ldots, e_m . By lemma 5.4, $m = N(g) = 2(i - j) - 1$. By lemma 5.5 for any $h \in S_n$,

$$
N(e_k \circ e_{k+1} \circ \cdots \circ e_m \circ h) - N(e_{k+1} \circ \cdots \circ e_m \circ h) \equiv 1 \pmod{2}
$$

Summing above equation for $k \in [1, m]$, we get

$$
N(e_1 \circ \cdots \circ e_m \circ h) - N(h) \equiv = m \text{ (mod 2)}
$$

\n
$$
\implies N(g \circ h) - N(h) \equiv 2(i - j) - 1 \text{ (mod 2)}
$$

\n
$$
\implies N(g \circ h) - N(h) \equiv 1 \text{ (mod 2)}
$$

 \implies For the functions f and $g_i, i \in [1,m]$ given in question,

$$
N(g_i \circ g_{i-1} \circ \cdots \circ g_m \circ Id) - N(g_{i-1} \circ \cdots \circ g_m \circ Id) \equiv 1 \pmod{2}
$$

Summing above equation for $i \in [1, m]$, we get,

$$
N(g_1 \circ g_2 \circ \cdots \circ g_m \circ Id) - N(Id) \equiv m \pmod{2}
$$

 $\implies N(f) \equiv m \pmod{2}$ (by inverse of lemma 5.2)

Let $G = (V, E)$ be a graph where V is the vertex set and E is the edge set. A bijective mapping $f: V \to V$ is an **automorphism** if it has the property that $(u, v) \in E \iff$ $(f(u), f(v)) \in E$. Consider the following graph.

Let $A = \{a_1, a_2, a_3\}, B = \{b_1, b_2, b_3\}, M = \{m_1, m_2, m_3, m_4\}.$ Then, the vertex set of the above graph is $V = A \cup B \cup M$. Consider a bijective mapping $g : A \cup B \rightarrow A \cup B$ such that $g(a_i) \in \{a_i, b_i\}$ and $g(b_i) \in \{a_i, b_i\}$ for all $i \in \{1, 2, 3\}$, i.e., g maps the ordered pair $\left[a_i,b_i\right]$ to either $\left[a_i,b_i\right]$ (no swap) or $\left[b_i,a_i\right]$ (swap).

Show that g can be extended to an automorphism f for the above graph if and only if the number of swaps performed by q is even.

Solution

We are asked to extend g to an automorphism f for the above graph. There are 4 cases in total for g i.e. either it performs 0, 1, 2 or 3 swaps. We will deal with each case individually. Also, note that given a particular bijection g on the set $A \cup B$, for extending it to another bijective function f on the set of vertices of the graph, we need to find a mapping for the set M to itself using f . So, we will use the fact that if such a mapping exists for which f turns out to be an automorphism then the case is possible otherwise not.

Case 1: No swaps

In this case, a simple identity mapping over the set M will work. We define the function f in the following way.

$$
f(x) = x \,\forall \, x \, \in V
$$

Therefore, we can say that $(u, v) \in E \iff (f(u), f(v)) \in E$.

For the rest of the cases, we will model the problem in a different way. Let us consider, an ordered set of tuples to represent the edge in the original graph between the set A∪B and M, where ${(m_n, m_q), (m_r, m_s)}$ and $p, q, r, s \in \{1, 2, 3, 4\}$ denote the nodes which are connected with the pair (a_i,b_i) for some $i\in\{1,2,3\}$ respectively. Let us call this set by a special name, say **E-set**. So, there will be three E-sets for the original graph.

$$
\{(m_3, m_4), (m_1, m_2)\} for \{(a_1, b_1)\}\
$$

$$
\{(m_2, m_4), (m_1, m_3)\} for \{(a_2, b_2)\}\
$$

$$
\{(m_2, m_3), (m_1, m_4)\} for \{(a_3, b_3)\}\
$$

Case 2: One Swap

Without loss of generality, assume that pair of nodes (a_3, b_3) to get swapped by g. Now, notice the fact the node m_1 is connected to all the three b_i and therefore if we keep two of b_i unchanged then for the node $f(m_1)$ to remain connected to the unchanged b_{i} , we should have that

$$
f(m_1) \in \{m_1, m_2\}
$$

$$
f(m_1) \in \{m_1, m_3\}
$$

so from the above two relations we have that,

$$
f(m_1) \in \{\{m_1, m_2\} \cap \{m_1, m_3\}\}\
$$

which implies that

$$
f(m_1)=m_1
$$

But we know that the pair (a_3, b_3) got swapped, therefore from it, we have the condition that the respective tuples of edges corresponding to a_3 and b_3 should also get reversed. And hence for m_1 , we have the condition that

$$
f(m_1) \in \{m_2, m_3\}
$$

which is a contradiction to the fact that $f(m_1) = m_1$. Hence, there exists no mapping f that can be an automorphism for such a choice of q .

Case 3: Two Swaps

In this case, we can provide a simple mapping for which f becomes an automorphism. Say, for instance that the pair $\left(a_i,b_i\right)$ was not swapped and let it's edge set be $\{(m_p, m_q), (m_r, m_s)\}.$

Claim : If f is such that, $f(m_p) = m_q$, $f(m_q) = m_p$ and $f(m_r) = m_s$, $f(m_s) = m_r$, then it is an automorphism.

Proof. We need to check that $(u, v) \in E \iff (f(u), f(v)) \in E$. In the case of the node, which does not get swapped, we know that f just swaps the two nodes it was connected to, so it still remains connected to both of them after f is applied. Now, in the case of a node that got swapped, say the pair $\left(a_j, b_j\right)$, we know that the set of nodes with which a node is connected to for any two a_i and b_i are not the same and hence if m_p occurs in the set of connected nodes for a_j , then m_q occurs in the set of connected nodes of b_j . Exactly similar analysis will work for b_j and m_r as well. Therefore, if

$$
(m_p, a_j) \in E
$$

then,
$$
(m_q, b_j) \in E
$$

or,
$$
(f(m_p), f(a_j)) \in E
$$

Similar analysis can be done for proving the reverse direction. We need to prove that whenever $(f(u), f(v)) \in E$, $(u, v) \in E$. In the case of the node, which does not get swapped, we know that f just swaps the two nodes it was connected to, so if $(f(m_p), f(a_i)) \in E$, then $(m_r, a_i) \in E$ and using the forward direction proved above, we have $(f(m_r), a_i) \in E$ or $(m_n, a_i) \in E$. Now, in the case of a node that got swapped, say the pair $(a_j,b_j).$ Therefore, if

 $(f(m_p), f(a_i)) \in E$

then, $(m_a, b_i) \in E$

or, $(f(m_q), f(b_i)) \in E$ using the forward direction proved earlier

therefore, $(m_p, a_i) \in E$

Exactly symmetrical analysis will work for $f(m_r)$ and b_i as well. Hence, the given function f is an automorphism of the original graph. \Box

Case 4: Three Swaps

This case is easy to analyse. Notice, that using the three original E-sets present in the graph, if we try to find what would f map m_1 to, we can easily reach a contradiction. As, using the three E-sets we get the relations

$$
f(m_1) \in \{m_3, m_4\}
$$

$$
f(m_1) \in \{m_2, m_4\}
$$

$$
f(m_1) \in \{m_2, m_3\}
$$

Therefore,

$$
f(m_1) \in \{\{m_3, m_4\} \cap \{m_2, m_4\} \cap \{m_2, m_3\}\}\
$$

Hence, $f(m_1) \in \emptyset$ which is a contradiction since f is bijective in nature. Hence, there cannot exist any extension for such a q .

From the above cases, we can say that g can be extended to an automorphism f iff g performs even number of swaps. Hence, proved. \Box **An Alternative Approach** Consider these tetrahedrons (also **K4** graphs): In Fig.1,

- \cdot Each **face** represents m_i , and each \textbf{edge} represents a_i or b_i . Also, a_i and b_i are opposite to each other. **Automorphism**: $(u, v) \in E \iff (f(u), f(v)) \in E$
- For automorphism property, the faces should remain **same** after swapping because each set of common edges, $(EX: (a_1, a_2, b_3)$ with m_4) represent **common edges to** m_i , which should remain same \forall a_i and b_i .
- Also, observe that all a_i originate from a $\mathbf{single\,vertex}$. Let this property be called $P1$. Also, all b_i **form a triangle**. Let this property be called $P2$.
- Note that, these properties P1 and P2 directly relate the relations of edge with each other and we can construct the whole tetrahedron given the properties for a_i and b_i and vice-versa with the "opposite edges property".
- Consider one swap between a_i and b_i , say $i=1$ without a loss of generality. The resulting tetrahedron is Fig.2. Here, a_i have $P2$ and b_i have $P1$. So, the properties $P1$ and $P2$ are $\bm{\text{exchanged}}$ between a_i and b_i .
- For automorphism, the faces should remain the same, hence, the properties for a_i and b_i should also remain same. But, a single swap also swaps or exchanges these properties between a_i and $b_i.$
- Hence, we need to do **even** number of swaps so that, these property remain the same for a_i and b_i . That is, at the end, we must have $P1$ for a_i and $P2$ for b_i .