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Question 1

1. Find the generating function for the following recurrence relation.

f(n+ 1) =

1 if n+ 1 = 0∑n
i=0 f(i)f(n− i) if n ≥ 0

2. Using the generating function and generalised binomial theorem for
√
1 + y,

find a closed form for f(n).

Solution

1 Part I

Let G(x) =
∞∑
i=0

f(i)xi. According to the question statement, f(0) = 1.

Consider also, G(x) =
∞∑
j=0

f(j)xj . Then,

(G(x))2 =
∞∑
i=0

f(i)xi ·
∞∑
j=0

f(j)xj =
∞∑
i=0

∞∑
j=0

f(i)f(j)xi+j

Let i+ j = n.

(G(x))2 =
∞∑
n=0

(
n∑

i=0

f(i)f(n− i))xn =
∞∑
n=0

f(n+ 1)xn ( Eqn 1.1)
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We also have,

G(x) = f(0)+xf(1)+x2f(2) · · · =⇒ G(x)− f(0)
x

= f(1)+xf(2)+x2f(3) · · · =
∞∑
n=0

f(n+1)xn

So, from Eqn 1.1,

(G(x))2 =
G(x)− f(0)

x
=
G(x)− 1

x

=⇒ x(G(x))2 −G(x) + 1 = 0

=⇒ G(x) =
1±
√
1− 4x

2x

The denominator vanishes at x = 0. We also have G(0) = f(0) = 1. This implies, we
must choose − sign, so that the expression is of the form 0

0
and not ∞

0
, which allows

us to manipulate expressions to remove singularities. Therefore,

G(x) =
1−
√
1− 4x

2x
=

2

1 +
√
1 + 4x

2 Part II

We have generalised binomial theorem where n is any complex number :

(x+ y)n =
∞∑
n=0

(
n

k

)
xkyn−k

Using generalised binomial theorem for real exponent 1
2

and x = 1, we have

√
1 + y =

∞∑
n=0

(
1
2

n

)
yn

=⇒
√
1− 4x =

∞∑
n=0

(
1
2

n

)
(−4)nxn = 1 +

∞∑
n=1

(
1
2

n

)
(−4)nxn

1−
√
1− 4x = −

∞∑
n=1

(
1
2

n

)
(−4)nxn = −

∞∑
n=0

(
1
2

n+ 1

)
(−4)n+1xn+1

=⇒ 1−
√
1− 4x

2x
=
−1
2
·
∞∑
n=0

(
1
2

n+ 1

)
(−4)n+1xn
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Simplifying the expression for
( 1

2
n+1

)
further,(

1
2

n+ 1

)
=

1

(n+ 1)!
· 1
2

−1
2

−3
2
. . .
−(2n− 1)

2

=
(−1)n

2n+1

1.3 . . . (2n− 1)

(n+ 1)!

=
(−1)n

2n+1

1.3 . . . (2n− 1)

(n+ 1)!
· 2.4.6 . . . (2n)

2nn!

=
(−1)n

2n+1

1.2.3.4 . . . (2n− 1).(2n)

2n(n+ 1)!n!

=
(−1)n

2n+1

(2n)!

2nn!(n+ 1)!
=

(−1)n

2n+1

(2n)!

2nn!n!(n+ 1)

=
(−1)n

2.4n(n+ 1)

(
2n

n

)
This implies that,

1−
√
1− 4x

2x
=
−1
2
·
∞∑
n=0

(
1
2

n+ 1

)
(−4)n+1xn =

−1
2

∞∑
n=0

(−4)n+1 · (−1)n

2.4n(n+ 1)

(
2n

n

)
xn

=
∞∑
n=0

(−1)2n+2 · 4

2.2
· 1

n+ 1
·
(
2n

n

)
xn =

∞∑
n=0

1

n+ 1
·
(
2n

n

)
xn

Therefore, the closed form for f(n) is,

f(n) =
1

n+ 1
·
(
2n

n

)
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Question 2

Define n-varaiate polynomials Pd and Qd as:

Pd(x1, x2, . . . , xn) =
∑

J⊆[1,n]
|J |=d

∏
r∈J

xr

Qd(x1, x2, . . . , xn) =
∑

0≤i1,i2,...,in≤d
i1+i2+···+in=d

n∏
r=1

xirr ,

and P0(x1, x2, . . . , xn) = 1 = Q0(x1, x2, . . . , xn). Show that for any d > 0:

d∑
m=0

(−1)mPm(x1, x2, . . . , xn)Qd−m(x1, x2, . . . , xn) = 0.

Solution

Consider the polynomial F (y) =
∏n

i=1(1− xiy).
It can be clearly seen that coefficient of yk is the sum of all such terms obtained by
multiplying the second term of each i-th factor (1−xiy) which is−xiy, which is linear
in y, from any k mono-polynomials being multiplied and first term i.e. 1 from rest of
the mono-polynomials.
Note: Here, a mono-polynomial is a factor in the expression for F (y) . Ex: (1− x2y)

∴ coefficient of yk in F (y) =
∑

J⊆[1,n]
|J |=k

∏
r∈J

(−xr)

= (−1)k
∑

J⊆[1,n]
|J |=k

∏
r∈J

(xr)

= (−1)kPk(x1, x2, . . . , xn)

Functional equation for 1
F (y)

:

1

F (y)
=

n∏
i=1

1

1− xiy
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=
n∏

i=1

∑
j≥0

(xjiy
j)

=
∑
d≥0

(
∑

0≤i1,i2,...,in≤d
i1+i2+···+in=d

n∏
r=1

xirr )y
d

=
∑
d≥0

Qd(x1, x2, . . . , xn)y
d

Multiplying both of these functional equations,

F (y)(
1

F (y)
) = (

∑
d≥0

(−1)dPd(x1, x2, . . . , xn)y
d)(
∑
d≥0

Qd(x1, x2, . . . , xn)y
d)

1 =
∑
d≥0

(
d∑

m=0

(−1)mPm(x1, x2, . . . , xn)Qd−m(x1, x2, . . . , xn))y
d

Equating powers of y on both sides,

=⇒
d∑

m=0

(−1)mPm(x1, x2, . . . , xn)Qd−m(x1, x2, . . . , xn) = 0, for d > 0
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Question 3

1. Let α ∈ R and N be a natural number. Using pigeon-hole principle, show that
there exists integers p and q such that 1 ≤ q ≤ N and

|qα− p| ≤ 1

N

2. Let α1, α2, . . . , αn ∈ R and N be a natural number. Using pigeon-hole principle,
show that there exists integers p1, p2, . . . , pn, q such that 1 ≤ q ≤ Nn and for all
i ∈ {1, . . . , n}

|αi −
pi
q
| ≤ 1

q1+1/n

Solution

3.1

Let us split the interval
[
0,1
)

into N equal sized intervals:

[
0,

1

N

)
,
[ 1
N
,
2

N

)
. . .
[N − 1

N
, 1
)

Consider, N +1 numbers, 0, α, 2α . . .Nα. There fractional part lies in the interval
[
0,1
)

.
There are N +1 real numbers (not necessarily all distinct) and N intervals, hence, by
Pigeonhole Principle two of the numbers must have their fractional part in the same
interval.
Hence, for some non-negative integers a and b s.t. 0 ≤ a, b ≤ N and a > b without a
loss of generality, the difference of fractional parts must be less than 1

N
;

=⇒ | {aα} − {bα} | < 1

N

=⇒ | (a− b)α− (baαc − bbαc) | < 1

N

Then, let q = (a− b) and p = (baαc − bbαc).
As 0 ≤ b < a ≤ N , 0 < a− b ≤ N =⇒ 1 ≤ a− b ≤ N .
Hence, 1 ≤ q ≤ N and we have two integers, p and q satisfying the given requirement.
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3.2

As
1

q
1
n

≥ 1

N

⇐⇒ 1

qN
≤ 1

q1+
1
n

Therefore, we must show that

| αi −
pi
q
| < 1

qN
≤ 1

q1+
1
n

which will imply
| αi −

pi
q
| < 1

q1+
1
n

This implies we must show that,

| qαi − pi | <
1

N

for all such pi and q. LetA be the set of N intervals defined (also in the previous part)
by partitioning [0, 1) into N equal parts. That is,

A = {[0, 1
N
), [

1

N
,
2

N
) . . . [

N − 1

N
, 1)}

For a integer t, consider {I : {tαi} ∈ I} a set of n intervals where I ∈ A. Let it be
referred as a n-tuple of intervals.
Then, we have Nn possibilities of the n-tuple.
Consider, Nn + 1 integers, from 0 to Nn. For each of them, we define such an n-tuple
(which are not necessarily distinct).

By Pigeonhole Principle, as we haveNn+1 integers and onlyNn choices for intervals,
two integers, say x and y must have the same n-tuple where 0 ≤ x, y,≤ Nn. Without
a loss of generality, we may assume x > y.
As both of the n-tuple belong to the same interval, for each i, {xαi} and {yαi} differ by
no more than 1

N
.

=⇒ | {xαi} − {yαi} | <
1

N
∀ 1 ≤ i ≤ n
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=⇒ | (x− y)αi − (bxαic − byαic) | <
1

N

Let q = x − y. As x > y, q > 0 and as 0 < y < x < Nn, we have, −Nn ≤ q ≤ Nn. Hence,
0 ≤ q ≤ Nn. Also, let pi = (bxαic − byαic).
Therefore, we obtain pi and q where 1 ≤ i ≤ n where

| qαi − pi | <
1

N

as required.
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Question 4

Give a proof for Ramsey’s theorem for general case.

Solution

The general case of Ramsey’s theorem states that for any c, n1, n2, . . . , nc, k ≥ 1, there
exists a numberN(n1, n2, . . . , nc, k) > 0 such that for any set X with |X| ≥ N(n1, n2, ..., nc, k),
and any mapping f : Xk 7→ {1, 2, ..., c}, there exists a i, 1 ≤ i ≤ c and a subset Y ⊆ X,

|Y| = ni , with f(Y k) = i.

Theorem 4.1. [Strong Form of Pigeon Hole Principle] Let q1, q2, . . . , qn be positive inte-
gers. If

q1 + q2 + · · ·+ qn − n+ 1

objects are put into n boxes, then either the 1st box contains atleast q1 objects, or the
2nd box contains at least q2 objects, . . . , the nth box contains at least qn objects.

Proof. Suppose, it is not true and the ith box contains at most qi − 1 objects, i =

1, 2, . . . , n. Then the total number of objects contained in the n boxes can be atmost

(q1 − 1) + (q2 − 1) + · · ·+ (qn − 1) = q1 + q2 + · · ·+ qn − n,

which is one less than the number of objects distributed. This results in a contradic-
tion.

Proof. Let us introduce a new symbolRk(n1, n2, . . . , nc) as the smallest value of such a
number N(n1, n2, . . . , nc, k) as referred in the definition. We will try to prove the ram-
sey’s theorem using an induction on k. For k = 1, we can choose R1(n1, . . . , nc) =

n1 + n2 + · · · + nc − c + 1, and this when used with Theorem 4.1 will imply that there
will exist a set Y with cardinality atleast ni for some i and for which all elements will
be mapped to i. Hence, the claim is true for k = 1. In the induction step, suppose that
the claim is already true for numbers upto k − 1.

For proving claim for k, we will use strong induction on c for k. For c = 1, it is triv-
ially true by selecting any Y ⊆ X, |Y | = n1. Suppose that the claim is true for k,∀c ≤ r

for some r, where r ≥ 1. For r = 1, or c = 1, it has been proved above.
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For proving claim for r, we will now induct on n1 + n2 · · · + nr for the rest of the
proof. Also, notice the fact that an implicit condition present in the theorem is that
k ≤ min{n1, n2, . . . , nc}. So, for handling the base case, we take ni = k for some i. We
observe that if ni = k then, Rk(n1, n2, . . . , nc) = Rk(n1, . . . , ni−1, ni+1, . . . , nr) by using
the fact that either we will choose the color i or not. If we choose color i, then only
k vertices are enough to find a Y of size k such that any arbitrary mapping f maps
these k vertices to the color i, otherwise if we are not going to use the color i, then
the minimum number of vertices would be same asRk(n1, . . . , ni−1, ni+1, . . . , nr). Now,
since the term on the right hand side is finite by induction hypothesis, so the cases
with ni = k have been dealt with. Now, we will try to show that

Rk(n1, n2, . . . , nr) ≤ Rk−1(Rk(n1−1, . . . , nr), . . . , Rk(n1, . . . , ni−1, . . . , nr), . . . , Rk(n1, . . . , nr−1))+1

We know that the right hand side is finite by the induction hypothesis on sum of ki
and also the Ramsey theorem for values less than k. Let the value of right hand side
of the above equation be S. Let us choose a set X of cardinality S and an arbitrary
mapping f : Xk 7→ {1, 2 . . . , r}. Let {A} be an element of X . Let us define another
set X ′ = X − {A}. Therefore |X ′| = |X| − 1. Let us choose a mapping g : (X ′)k−1 7→
{1, 2, . . . , r} such that g maps any k−1 sized subset x′ ofX ′ to the same number which
f maps x′ ∪ {A} to.
Since |X ′| = Rk−1(Rk(n1−1, . . . , nr), . . . , Rk(n1, . . . , ni−1, . . . , nr), . . . , Rk(n1, . . . , nr−1)),
therefore by definition of Ramsey’s theorem, we can say that ∃i such that ∃Y ⊆ X ′

and |Y | = Rk(n1, . . . , ni − 1, . . . , nr), g(Y
k−1) = i.

Now, using definition of Ramsey’s theorem on this newly defined set Y with |Y | =
Rk(n1, . . . , ni − 1, . . . , nr), we can say that ∃j such that either j 6= i and ∃Z ⊆ Y, |Z| =
nj, f(Z

k) = {j}, in which case we are done or j = i in which case ∃Z ⊆ Y, |Z| =

ni−1, f(Zk) = {i}. Now in this case, since Z ⊆ Y , g(Y k−1) = {i} =⇒ g(Zk−1) = {i} .
By definition of g, this implies that g(z) = f(z∪{A}) = {i} ∀ z ∈ Zk−1. If we define a set
Z ′ = Z∪{A}, then, we have f(z) = {i} ∀ z ∈ (Z ′)k and |Z ′| = ni. Therefore, we can say
that by choosing a setX with cardinality S , we can find for any arbitrary mapping f , a
subset Y ′ with cardinality ni and f((Y ′)k) = i for some i <= r and since Rk(n1, . . . , nr)

is smallest such cardinality of set X , therefore it would be less than or equal to S

which proves the above inequality and hence the finiteness of Rk(n1, n2, . . . , nr) and
hence the theorem in general.
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Question 5

Consider the set Sn = {f | f : [n] → [n] and f is a bijection} which contains all bi-
jective mapping from [n] to [n] where [n] = {1, 2, 3, . . . , n}. In other words, any f ∈ Sn

simply permutes the elements in [n].

1. A mapping f ∈ Sn is called a transposition if there exists (i, j) such that 0 ≤ i 6=
j ≤ n and

f(k) =


j if k = i

i if k = j

k otherwise

Show that any g ∈ Sn can be written as a finite product f1 ◦ f2 ◦ · · · ◦ fm where
each fi is a transposition in Sn.

2. The parity of a function f in Sn denoted by N(f) is defined as the number of
pairs (i, j) such that 1 ≤ i < j ≤ n and f(i) > f(j). Show that

N(f) ≡ m (mod 2)

where f = g1 ◦ g2 ◦ · · · ◦ gm and each gi is a transposition in Sn.

Solution

Consider the adjacent transpositions ei ∈ Sn, 1 ≤ i < n be defined as:

ei(x) =


i+ 1 if x = i

i if x = i+ 1

x otherwise

Lemma 5.1. If there exist a pair (i, j) s.t. 1 ≤ i < j ≤ n and f(i) > f(j), then there exists
a pair (k, k + 1) s.t. 1 ≤ k < n and f(k) > f(k + 1).

Proof. Let us assume there does not exist any pair (k, k + 1) s.t. i ≤ k < j and f(k) >
f(k + 1).

=⇒ f(k) ≤ f(k + 1),∀k s.t. i ≤ k < j.
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=⇒ f(i) ≤ f(i+ 1) ≤ · · · ≤ f(j − 1) ≤ f(j)

=⇒ f(i) ≤ f(j), which is clearly contradiction.

Lemma 5.2. If N(f) = 0 for some f ∈ Sn, then f(x) = Id(x)(identity function).

Proof. AsN(f) = 0, it implies there does not exist any pair (i, j) such that 1 ≤ i < j ≤ n

and f(i) > f(j).
=⇒ f(i) ≤ f(j)∀i, j s.t. 1 ≤ i < j ≤ n.
=⇒ f is increasing function.

Since f is both increasing and onto(bijective), it implies f(x) needs to be identity
function.

Inverse of lemma 5.2 is also true as can be easily seen ∀i, j s.t. 1 ≤ i < j ≤ n =⇒
Id(i) < Id(j), =⇒ N(Id) = 0.

Lemma 5.3. If N(f) > 0 for some f ∈ Sn, then there exist an adjacent transposition ei

for some i s.t. N(ei ◦ f) = N(f)− 1

Proof. N(f) > 0 =⇒ there exist a pair (i, j) s.t. 1 ≤ i < j ≤ n and f(i) > f(j)

=⇒ there exist a pair (k, k+1) s.t. 1 ≤ k < n and f(k) > f(k+1). (from lemma 5.1).
Let us call the a pair (i, j) a bad pair w.r.t. f ∈ Sn if 1 ≤ i < j ≤ n and f(i) > f(j).

Consider the adjacent transposition ek. Consider the following disjoint cases of pairs
(i, j) s.t. 1 ≤ i < j ≤ n:

1. Case: i, j ∈ [1, n]− {k, k + 1}

f(i) > f(j) =⇒ ek(f(i)) > ek(f(j)) and f(i) ≤ f(j) =⇒ ek(f(i)) ≤ ek(f(j))

Hence, the number of bad pairs are same w.r.t. f and ei ◦ f in (i, j).

2. Case: i ∈ {k, k + 1}, n ≥ j > k + 1

f(k) > f(j) =⇒ ek(f(k + 1)) > ek(f(j)) and f(k) ≤ f(j) =⇒ ek(f(k + 1)) ≤
ek(f(j))

So, the number of bad pairs in (k, j) w.r.t f are equal to number of bad pairs in
(k + 1, j) w.r.t. ei ◦ f .

Similarly, f(k + 1) > f(j) =⇒ ek(f(k)) > ek(f(j)) and f(k + 1) ≤ f(j) =⇒
ek(f(k)) ≤ ek(f(j))

Hence, the number of bad pairs in (k + 1, j) w.r.t f are equal to number of bad
pairs in (k, j) w.r.t. ei ◦ f .
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Hence, the number of bad pairs are same w.r.t. f and ei ◦ f in (i, j).

3. Case: 1 ≤ i < k, j ∈ {k, k + 1}

f(i) > f(k) =⇒ ek(f(i)) > ek(f(k+1)) and f(i) ≤ f(k) =⇒ ek(f(i)) ≤ ek(f(k+1))

So, the number of bad pairs in (i, k) w.r.t f are equal to number of bad pairs in
(i, k + 1) w.r.t. ei ◦ f .

Similarly, f(i) > f(k + 1) =⇒ ek(f(i)) > ek(f(k)) and f(i) ≤ f(k + 1) =⇒
ek(f(i)) ≤ ek(f(k))

Hence, the number of bad pairs in (i, k + 1) w.r.t f are equal to number of bad
pairs in (i, k) w.r.t. ei ◦ f .

Hence, the number of bad pairs are same w.r.t. f and ei ◦ f in (i, j).

4. Case: i = k, j = k + 1

Since, f(k) > f(k + 1) =⇒ ei(f(k)) <= ei(f(k + 1)), (i, j) = (k, k + 1) is a bad pair
w.r.t. f but not w.r.t. ei ◦ f .

Hence, except the last case the number of bad pairs w.r.t f and ei ◦ f were same
but in last case f had one more bad pair than ei ◦ f . Since, by definition of bad pairs,
N(f) = number of bad pairs in f =⇒ N(ek ◦ f) = N(f)− 1.

Lemma 5.4. For a transposition f , transpositioning i and j where i, j ∈ [1, n] and i < j,
N(f) = 2(i− j)− 1.

Proof. Consider following mutually exclusive cases of pairs (x, y) s.t. x, y ∈ [1, n] and
x < y:

1. Case: x < i

for y /∈ {i, j}, x < y =⇒ f(x) < f(y), hence no bad pairs.

for y = j, x < i =⇒ f(x) < f(j) =⇒ f(x) < f(y), hence no bad pair

Total bad pairs = 0.

2. Case: x = i

for i < y < j, y < j =⇒ f(y) < f(i) =⇒ f(y) < f(x), hence j − i− 1 bad pairs.

for y = j, i < j =⇒ f(j) < f(i) =⇒ f(y) < f(x), hence 1 bad pair.

for j < y < n, j < y =⇒ f(i) < f(y) =⇒ f(x) < f(y), hence no bad pairs.

So, total bad pairs = i− j.
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3. Case: i < x < j

for y 6= j, x < y =⇒ f(x) < f(y), hence no bad pairs.

for y = j, i < x =⇒ f(j) < f(x) =⇒ f(y) < f(x), hence j − i− 1 bad pair.

4. Case: x ≥ j

for x = j, i < y =⇒ f(j) < f(y) =⇒ f(x) < f(y), hence no bad pair.

for x > j, x < y =⇒ f(x) < f(y), hence no bad pair.

Hence, total number of bad pairs, N(f) = 2(j − i)− 1 =⇒ N(f) ≡ 1(mod2)

Lemma 5.5. Let ek be an adjacent transposition for some k and let f ∈ Sn. Then,
N(ek ◦ f)−N(f) ≡ 1 (mod 2).

Proof. While proving lemma 5.3, it can be seen that in the cases 1-3, the argument
holds for any general f ∈ Sn and for ek , for any k s.t. 1 ≤ k < n. Hence, the number of
bad pairs are same for cases 1-3 w.r.t. f and ek ◦ f

For the case i = k, j = k + 1, if f(i) < f(j) =⇒ (ek ◦ f)(j) < (ek ◦ f)(i) =⇒ N(f) =

N(ek ◦ f)− 1 or if f(i) > f(j) =⇒ (ek ◦ f)(i) < (ek ◦ f)(j) =⇒ N(f) = N(ek ◦ f) + 1.

=⇒ N(f)−N(ek ◦ f) ≡ 1 (mod 2)

5.1

It can be seen that that the maximum number of bad pairs in any g ∈ Sn are strictly
less than the number of pair (i, j) s.t. i < j, hence parity of g is finite.

By lemma 5.3, ∃ adjacent transposition h1 = ei for some i s.t. N(ei ◦ f) = N(f)− 1.
Let g1 = e1 ◦ f . Similarly, for gk−1,∃hk = ei for some i s.t. N(gk) = N(gk−1) − 1, where
gk = hk ◦ gk−1, for 1 < k ≤ m where N(gm) = 0. Since N(gk) = N(gk−1)− 1 and N(g1) =

N(g)− 1 =⇒ N(gi) = N(g)− i =⇒ N(gm) = N(g)−m = 0 (by inverse of lemma 5.3)
=⇒ m = N(g).

Since, N(gm) = 0 =⇒ gm = Id (by lemma 5.2). It can also be easily seen that for
any adjacent transposition e, e(e(x)) = x,∀x =⇒ e ◦ e = Id.

As, gm = hm ◦ gm−1
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= hm ◦ hm−1 ◦ gm−2
= hm ◦ · · · ◦ h1 ◦ g

=⇒ h1 ◦ · · · ◦ hm ◦ Id = h1 ◦ · · · ◦ hm ◦ hm ◦ · · · ◦ h1 ◦ g (hm = Id)

=⇒ h1 ◦ · · · ◦ hm = g

Hence, there exists transpositions fi = hi for s.t. g = f1 ◦ f2 ◦ · · · ◦ fm

5.2

As a corollary of part 5.1, it can be seen that any transposition, say g transpositioning
i and j, can be represented as a product of m = N(g) adjacent transpositions, say
e1, e2, . . . , em. By lemma 5.4, m = N(g) = 2(i− j)− 1. By lemma 5.5 for any h ∈ Sn,

N(ek ◦ ek+1 ◦ · · · ◦ em ◦ h)−N(ek+1 ◦ · · · ◦ em ◦ h) ≡ 1 (mod 2)

Summing above equation for k ∈ [1,m], we get

N(e1 ◦ · · · ◦ em ◦ h)−N(h) ≡= m (mod 2)

=⇒ N(g ◦ h)−N(h) ≡ 2(i− j)− 1 (mod 2)

=⇒ N(g ◦ h)−N(h) ≡ 1 (mod 2)

=⇒ For the functions f and gi, i ∈ [1,m] given in question,

N(gi ◦ gi−1 ◦ · · · ◦ gm ◦ Id)−N(gi−1 ◦ · · · ◦ gm ◦ Id) ≡ 1 (mod 2)

Summing above equation for i ∈ [1,m], we get,

N(g1 ◦ g2 ◦ · · · ◦ gm ◦ Id)−N(Id) ≡ m (mod 2)

=⇒ N(f) ≡ m (mod 2) ( by inverse of lemma 5.2)
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Question 6

Let G = (V,E) be a graph where V is the vertex set and E is the edge set. A bijective
mapping f : V → V is an automorphism if it has the property that (u, v) ∈ E ⇐⇒
(f(u), f(v)) ∈ E. Consider the following graph.

Let A = {a1, a2, a3}, B = {b1, b2, b3},M = {m1,m2,m3,m4}. Then, the vertex set of
the above graph is V = A ∪ B ∪M . Consider a bijective mapping g : A ∪ B → A ∪ B
such that g(ai) ∈ {ai, bi} and g(bi) ∈ {ai, bi} for all i ∈ {1, 2, 3}, i.e., g maps the ordered
pair [ai, bi] to either [ai, bi] (no swap) or [bi, ai] (swap).

Show that g can be extended to an automorphism f for the above graph if and only if
the number of swaps performed by g is even.

Solution

We are asked to extend g to an automorphism f for the above graph. There are 4 cases
in total for g i.e. either it performs 0, 1, 2 or 3 swaps. We will deal with each case indi-
vidually. Also, note that given a particular bijection g on the set A ∪ B, for extending
it to another bijective function f on the set of vertices of the graph, we need to find a
mapping for the setM to itself using f . So, we will use the fact that if such a mapping
exists for which f turns out to be an automorphism then the case is possible other-
wise not.
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Case 1: No swaps
In this case, a simple identity mapping over the set M will work. We define the func-
tion f in the following way.

f(x) = x ∀ x ∈ V

Therefore, we can say that (u, v) ∈ E ⇐⇒ (f(u), f(v)) ∈ E.

For the rest of the cases, we will model the problem in a different way. Let us consider,
an ordered set of tuples to represent the edge in the original graph between the set
A∪B andM , where {(mp,mq), (mr ,ms)} and p, q, r, s ∈ {1, 2, 3, 4} denote the nodes which
are connected with the pair (ai, bi) for some i ∈ {1, 2, 3} respectively. Let us call this
set by a special name, say E-set. So, there will be three E-sets for the original graph.

{(m3,m4), (m1,m2)} for {(a1, b1)}

{(m2,m4), (m1,m3)} for {(a2, b2)}

{(m2,m3), (m1,m4)} for {(a3, b3)}

Case 2: One Swap
Without loss of generality, assume that pair of nodes (a3, b3) to get swapped by g. Now,
notice the fact the node m1 is connected to all the three bi and therefore if we keep
two of bi unchanged then for the node f(m1) to remain connected to the unchanged
bi, we should have that

f(m1) ∈ {m1,m2}

f(m1) ∈ {m1,m3}

so from the above two relations we have that,

f(m1) ∈ {{m1,m2} ∩ {m1,m3}}

which implies that
f(m1) = m1

But we know that the pair (a3, b3) got swapped, therefore from it, we have the con-
dition that the respective tuples of edges corresponding to a3 and b3 should also get
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reversed. And hence for m1, we have the condition that

f(m1) ∈ {m2,m3}

which is a contradiction to the fact that f(m1) = m1. Hence, there exists no mapping
f that can be an automorphism for such a choice of g.

Case 3: Two Swaps
In this case, we can provide a simple mapping for which f becomes an automor-
phism. Say, for instance that the pair (ai, bi) was not swapped and let it’s edge set be
{(mp,mq), (mr,ms)}.

Claim : If f is such that, f(mp) = mq , f(mq) = mp and f(mr) = ms, f(ms) = mr , then it
is an automorphism.

Proof. We need to check that (u, v) ∈ E ⇐⇒ (f(u), f(v)) ∈ E. In the case of the
node, which does not get swapped, we know that f just swaps the two nodes it was
connected to, so it still remains connected to both of them after f is applied. Now, in
the case of a node that got swapped, say the pair (aj, bj), we know that the set of nodes
with which a node is connected to for any two ai and bi are not the same and hence if
mp occurs in the set of connected nodes for aj , thenmq occurs in the set of connected
nodes of bj . Exactly similar analysis will work for bj and mr as well. Therefore, if

(mp, aj) ∈ E

then, (mq, bj) ∈ E

or, (f(mp), f(aj)) ∈ E

Similar analysis can be done for proving the reverse direction. We need to prove
that whenever (f(u), f(v)) ∈ E , (u, v) ∈ E. In the case of the node, which does not
get swapped, we know that f just swaps the two nodes it was connected to, so if
(f(mp), f(ai)) ∈ E , then (mr, ai) ∈ E and using the forward direction proved above,
we have (f(mr), ai) ∈ E or (mp, ai) ∈ E. Now, in the case of a node that got swapped,
say the pair (aj, bj).Therefore, if

(f(mp), f(aj)) ∈ E
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then, (mq, bj) ∈ E

or, (f(mq), f(bj)) ∈ E using the forward direction proved earlier

therefore, (mp, aj) ∈ E

Exactly symmetrical analysis will work for f(mr) and bj as well. Hence, the given
function f is an automorphism of the original graph.

Case 4: Three Swaps
This case is easy to analyse. Notice, that using the three original E-sets present in the
graph, if we try to find what would f map m1 to, we can easily reach a contradiction.
As, using the three E-sets we get the relations

f(m1) ∈ {m3,m4}

f(m1) ∈ {m2,m4}

f(m1) ∈ {m2,m3}

Therefore,
f(m1) ∈ {{m3,m4} ∩ {m2,m4} ∩ {m2,m3}}

Hence, f(m1) ∈ ∅which is a contradiction since f is bijective in nature. Hence, there
cannot exist any extension for such a g.

From the above cases, we can say that g can be extended to an automorphism f iff g
performs even number of swaps. Hence, proved.
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An Alternative Approach Consider these tetrahedrons (also K4 graphs): In Fig.1,

• Each face represents mi, and each edge represents ai or bi. Also, ai and bi are
opposite to each other. Automorphism: (u, v) ∈ E ⇐⇒ (f(u), f(v)) ∈ E

• For automorphism property, the faces should remain same after swapping be-
cause each set of common edges, (Ex: (a1, a2, b3) with m4) represent common
edges to mi, which should remain same ∀ ai and bi.

• Also, observe that all ai originate from a single vertex. Let this property be called
P1 .Also, all bi form a triangle. Let this property be called P2.

• Note that, these properties P1 and P2 directly relate the relations of edge with
each other and we can construct the whole tetrahedron given the properties for
ai and bi and vice-versa with the "opposite edges property".

• Consider one swap between ai and bi, say i = 1 without a loss of generality. The
resulting tetrahedron is Fig.2 . Here, ai have P2 and bi have P1. So, the properties
P1 and P2 are exchanged between ai and bi .

• For automorphism, the faces should remain the same, hence, the properties for
ai and bi should also remain same. But, a single swap also swaps or exchanges
these properties between ai and bi.

• Hence, we need to do even number of swaps so that, these property remain the
same for ai and bi. That is, at the end, we must have P1 for ai and P2 for bi.
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