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Question 1

Let S be a finite set and F be set of all bijections from S to S. Show that F along with
the composition operation is a group.

Solution

For proving the above result, we will first provide some standard results for functions.

Lemma 1.1. If f : X → Y , g : Y → Z and h : Z → W are functions, then (h ◦ g) ◦ f =
h ◦ (g ◦ f), where ◦ represents the composition operator.

Proof. Note that for every x ∈ X we have,

[(h ◦ g) ◦ f ](x) = (h ◦ g)(f(x))

= h(g(f(x)))

= h((g ◦ f)(x))

= [h ◦ (g ◦ f)](x)

Therefore, (h ◦ g) ◦ f = h ◦ (g ◦ f).

Lemma 1.2. Suppose f : X → Y and g : Y → Z are bijections. Then their composition
h = (g ◦ f) : X → Z is also a bijection.
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Proof. We will first show that h is injective or we will show that if h(x) = h(x′), then
we musht have that x = x′. Suppose that h(x) = h(x′). Using the definition of h this
implies that g(f(x)) = g(f(x′)). Since, both f and g are injective therefore,

g(f(x)) = g(f(x′)) =⇒ f(x) = f(x′)

=⇒ x = x′

Hence, h is injective.
Now, we will show that h is surjective. Since, f and g are both surjections, we have
that f(X) = Y and g(Y ) = Z . Therefore, we have that

h(A) = (g ◦ f)(A)

= {z ∈ Z|(g ◦ f)(x) = z, for some x ∈ X}

= {z ∈ Z|(g(f(x)) = z, for some x ∈ X}

= {z ∈ Z|(g(y) = z, for some y ∈ f(X)}

= g(f(X))

= g(Y )

= Z

Hence, h is surjective as well and hence h is bijective.

Lemma 1.3. There exists an inverse for every bijective function f : X → Y which is
also bijective.

Proof. Define f−1 : Y → X by letting f−1(y) be the unique x in X for which f(x) = y.
(Since, f is surjective there is at least one such x and since f is injective, there is at
most one such x. Hence, it is unique). For f−1 to be the inverse of f we need to show
that for all x ∈ X and y ∈ Y ,

f−1(f(x)) = x and f(f−1(y)) = y

Now, for x ∈ X , we have f−1(f(x)) = x (since [f−1(f(x)) is defined to be the element
that f sends to f(x)). Similarly, for y ∈ Y , f(f−1(y)) = y (since f−1(y) is defined to be
the element that f sends to y). Therefore, f−1 is an inverse of f .
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Now, for proving that f−1 is also bijective, we will prove it’s injectivity and surjectivity
independently. For injectivity, we need to show that if f−1(y1) = f−1(y2) then y1 = y2.
Since, f−1(y1), f−1(y2) ∈ X, we can fix x1, x2 ∈ X such that, f−1(y1) = x1 and f−1(y2) =
x2, with the assumption that x1 = x2. This implies that f(x1) = f(x2). Substituting
f−1(y1) = x1 and f−1(y2) = x2, we can see that

f(f−1(y1)) = f(f−1(y2))

=⇒ y1 = y2

Hence f−1 is injective. Now, for proving surjectivity, we need to show that for any
arbitrary x ∈ X , we can find a y ∈ Y such that f−1(y) = x. Since, f is bijective, there
exists a z ∈ X such that f(z) = y. Therefore, we get x = f−1(f(z)) = z. Therefore,
we can find for any arbitrary x ∈ X , a y = f(x) ∈ Y which gets mapped to x by f−1.
Hence, we proved the surjectivity and therefore, f−1 is bijective.

Now, to prove that F along with the composition operation is a group, we will check
for each of the properties of the group, one by one.

• Closure: We need to show that for every f, g ∈ F , there is a unique h ∈ F such
that f ◦ g = h.

Proof. We need to show two things here, first is that h is unique and other that
h ∈ F . We have with us bijective functions f : S → S and g : S → S. Note that,
domain of h is same as domain of gwhich isS and at every s ∈ S , h(s) is uniquely
defined by f(g(h)) and hence h is unique. Now, for proving that h ∈ F , we will use
directly Lemma 1.2, which gives the result that h : S → S is a bijection. Hence,
closure is satisfied.

• Associativity: We need to prove that for every f, g, h ∈ F , (h ◦ g) ◦ f = h ◦ (g ◦ f)
which is a direct result of Lemma 1.1. Hence, associativity is also satisfied.

• Identity: We need to show that there is I ∈ F such that f ◦ I = f for every f .

Proof. Choose I : S → S such that I(s) = s ∀ s ∈ S (identity function). It is
trivially a bijective function on S and hence I ∈ F . Also, for every f ∈ S , we
have [f ◦ I](s) = f(I(s)) = f(s) ∀ s ∈ S and [I ◦ f ](s) = I(f(s)) = f(s) ∀ s ∈ S.
Hence, the Identity property also gets satisfied.
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• Inverse: We need to show that for every f ∈ F , there exists g ∈ F such that
f ◦ g = I , where I is the identity.

Proof. In other words we need to show that for all f ∈ F there exists g ∈ F such
that for all s ∈ S ,

[f ◦ g](s) = I(s) = s

Using Lemma 1.3 we know that there exists an inverse for f , say f−1 and there-
fore using the property of inverses [f ◦ f−1](s) = f(f−1(s)) = s ∀ s ∈ S and
[f−1 ◦ f ](s) = f−1(f(s)) = s ∀ s ∈ S. Hence, the Inverse property is also satis-
fied.

Therefore, F along with composition operation forms a group.
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Question 2

Let G be a non-commutative group and e ∈ G be the identity element. The order of
an element g ∈ G denoted as ord(g) is the smallest natural number s such that gs = e

where
gi = g.g.g . . . g︸ ︷︷ ︸

number of g is i

Let a and b be elements of G such that ord(a) = 7 and a3b = ba3. Prove that ab = ba.

Solution

ord(a) = 7 =⇒ a7 = e (by definition of ord)

a9b = a6(a3b)

= a6(ba3) (given)

= a3(a3b)a3 (associative property)

= a3(ba3)a3 (given a3b = ba3)

= (a3b)a6 (associative property)

= (ba3)a6 (given a3b = ba3)

= ba9

=⇒ a9b = ba9

=⇒ a2(a7)b = ba2(a7)

=⇒ a2(e)b = ba2(e) (a7 = e)

=⇒ a2b = ba2 (ae = a)

Pre-multiplying both sides by a,

a3b = aba2

=⇒ ba3 = aba2 (given a3b = ba3)
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Post-multiplying both sides by a5,

ba8 = aba7

=⇒ ba(a7) = ab(a7)

=⇒ ba(e) = ab(e) (a7 = e)

=⇒ ba = ab (ae = e)

Alternative Solution:
We have a3b = ba3 and a7 = e.
Pre-multiplying the first equation by a4 and then post-multiplying it by a,

a4a3ba = a7ba = ba = a4ba4 =⇒ ba = aa3ba4 = a(ba3)a4 = aba3a4 = aba7 = ab

Hence, ab = ba .
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Question 3

Let Q[α, β] denote the smallest subring of C containing rational numbers Q and the
element α =

√
2 and β =

√
3. Let γ = α + β. Is Q[α, β] = Q[γ]?

Solution

Yes. A subring of a ring C is a subset of C that is also a ring in itself under the opera-
tions restricted to itself. (Wikipedia)
A ring is closed under addition and multiplication operations. Hence, any linear
combination of any rational number along with α, β and αβ ∈ Q[α, β]. This means
∀ x ∈ Q[α, β]

∃ r1, r2, r3, r4 ∈ Q | x = r1 + r2 · α + r3 · β + r4 · αβ

Claim: Let A = {x | ∃ a, b, c, r ∈ Q s.t. x = r + aα + bβ + cαβ}. Then A with addition
operation (+) and multiplication operation (×) form a ring and this ring is equal to
Q[α, β].

Proof. For any two elements x1, x2 ∈ A s.t. x1 = r1 + a1α + b1β + c1αβ and x2 = r2 +

a2α + b2β + c2αβ,

x1 + x2 = (r1 + a1α + b1β + c1αβ) + (r2 + a2α + b2β + c2αβ)

= (r1 + r2) + (a1 + a2)α + (b1 + b2)β + (c1 + c2)αβ

= r3 + a3α + b3β + c3αβ

where, r3 = r1 + r2, a3 = a1 + a2, b3 = b1 + b2 and c3 = c1 + c2 and r3, a3, b3, c3 ∈ Q by
closure property of Q.

Hence, x1 + x2 ∈ A =⇒ + satisfies closure property in A. Other properties like
commutative, associative, additive identity(0) and existence of inverse can be easily
seen are satisfied for addition.

x1x2 = (r1 + a1α + b1β + c1αβ)(r2 + a2α + b2β + c2αβ)

= (r1r2 + 2a1a2 + 3b1b2 + 6c1c2) + (r1a2 + 3b1c2 + r2a1 + 3b2c1)α

+ (r1b2 + r2b1 + 2a1c2 + 2a2c1)β + (r1c2 + r2c1 + a1b2 + a2b1)αβ

= r4 + a4α + b4β + c4αβ
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where, r4 = (r1r2 + 2a1a2 + 3b1b2 + 6c1c2), a4 = (r1a2 + 3b1c2 + r2a1 + 3b2c1), b4 = (r1b2 +

r2b1 + 2a1c2 + 2a2c1), and c4 = (r1c2 + r2c1 + a1b2 + a2b1) and r4, a4, b4, c4 ∈ Q by closure
property of Q

Hence, x1x2 ∈ A =⇒ × satisfies closure property in A. Other properties like com-
mutative, associative and multiplicative identity(1) can be easily seen are satisfied
for multiplication also. Also, it can be easily seen multiplication is distributive over
addition for A.

Hence, A forms a ring with + and ×. Since, A ∈ C =⇒ A is subring of C.
ConsiderQ[α, β], since α, β ∈ Q[α, β] =⇒ αβ ∈ Q[α, β] by closure in multiplication.

Also, it implies, r + aα + bβ + cαβ ∈ Q[α, β]∀r, a, b, c ∈ Q =⇒ A ⊆ Q[α, β] by closure
of addition and multiplication. Hence, every set containing α and β with rational
numbers forming subring in C must contain A as subset and since A forms subring
in C, smallest such set is A =⇒ Q[α, β] = A.

If Q[α, β] = Q[γ], then, every element in Q[α, β] must be present in Q[γ] and vice-
versa.
Lemma: If y ∈ Q[x], then Q[y] ⊆ Q[x].
Proof: The set of rational numbersQ is common in both. AsQ[x] is a ring, and y ∈ Q[x],
hence, ∀ z ∈ Q[x], y + z and y · z ∈ Q[x]. But, all elements of Q[y] can be expressed at
linear combination of sums and products of rationals and y. So, y and rationals along
with their sums and products ∈ Q[x], Q[y] ⊆ Q[x].
Therefore, if we show that γ ∈ Q[α, β] and simultaneously, α, β and αβ ∈ Q[γ], then,

Q[α, β] ⊆ Q[γ] & Q[γ] ⊆ Q[α, β] =⇒ Q[α, β] = Q[γ]

The first part is obvious as 1 · α + 1 · β = γ by definition, hence, γ ∈ Q[α, β].
For the second part, as γ ∈ Q[γ], hence,

γ · γ = γ2 = 5 + 2
√
6 ∈ Q[γ] (multiplicative closure) =⇒

√
6 = αβ ∈ Q[γ]

. Hence, let
δ =
√
6 · γ =

√
6(
√
2 +
√
3) =

√
12 +

√
18 = 2

√
3 + 3

√
2

. δ ∈ Q[γ] due to multiplicative closure.
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Now,
δ − 2γ =

√
2 = α =⇒ α ∈ Q[γ]

. Also,
β = γ − α =⇒ β ∈ Q[γ]

.
Therefore, as γ ∈ Q[α, β] and α, β and αβ ∈ Q[γ], with the ring of rationals Q common,
these two subrings are equal.
Claim: Let A be the same set as in previous claim, then Q[γ] is equal to the subring
formed by A in C.

Proof. As γ ∈ Q[γ], hence,

γ · γ = γ2 = 5 + 2
√
6 ∈ Q[γ] (multiplicative closure) =⇒

√
6 = αβ ∈ Q[γ]

. Hence, let
δ =
√
6 · γ =

√
6(
√
2 +
√
3) =

√
12 +

√
18 = 2

√
3 + 3

√
2

Since, δ ∈ Q[γ] due to multiplicative closure.
Now,

δ − 2γ =
√
2 = α =⇒ α ∈ Q[γ]

. Also,
β = γ − α =⇒ β ∈ Q[γ]

.
Since, α, β and αβ ∈ Q[γ], it implies their linear combination with rational numbers
must also belong to Q[γ],

=⇒ A ⊆ Q[γ] (by definition of A)

Since, A contains γ and rational numbers, and also every ring containing γ and ra-
tional numbers must have A as subset, hence minimal such ring containing γ and
rational numbers is ring formed by A,

=⇒ Q[γ] = A
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Question 4

An element n of a ring R is called nilpotent if there exists j ∈ N such that nj = 0. An
element u of a ring R is called a unit if there exists v ∈ R such that uv = 1. Prove that
if r ∈ R is nilpotent, then 1− r is a unit.

Solution

Since r is nilpotent, there exists j ∈ N such that rj = 0. Suppose that rm = 0 for some
m ∈ N.
Observation 1: ∀ n ∈ N and ∀ r ∈ R rn ∈ R.

Proof. We will show this by induction on n. For n = 1, this is trivially true. Suppose
that rn−1 ∈ R. Since, rn = rn−1 · r and R is closed under (·), therefore rn ∈ R. Hence,
proved.

Observation 2: For any r ∈ R and for all n ∈W,
∑i=n

i=0 r
i ∈ R.

Proof. We will show this by induction on n. For n = 0, this is trivially true. Suppose it
is true for n− 1. Since,

∑i=n
i=0 r

i =
∑i=n−1

i=0 ri + rn therefore using the above observation
that rn ∈ R and the fact that (R,+) form a commutative group (which implies that R
is closed under +), we get that

∑i=n
i=0 r

i ∈ R. Hence, proved.

Also, observe that (R,+) forming a commutative group implies that
∑i=n

i=1 ri can be
permuted in any order to give the same result.

Now, if we take u = 1 − r ∈ R and v =
∑i=m−1

i=1 ri. Using the above observations, we
know that v ∈ R. Therefore we see that,

uv = (1− r)(1 + r + r2 + · · ·+ rm−1)

= (1 + r + r2 + · · ·+ rm−1) + (−r + (−r2) + · · ·+ (−rm))

= (1 + (−rm)) {Using commutativity}

= 1 {Using nilpotency}

Hence, we proved that there exists a v for any arbitrary u = 1− r, such that uv = 1 or
1− r is a unit.
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Question 5

Let I and J be ideals of a ring R such that I + J = R. Prove that IJ = I ∩ J where
IJ = {

∑
xy|x ∈ I, y ∈ J}.

Solution

By definition of ideal: If x ∈ I ⊆ R and I is an ideal, then r · x ∈ I ∀ r ∈ R.
Also according to Wikipedia, "when R is a commutative ring, the definitions of left,
right, and two-sided ideal coincide, and the term ideal is used alone." Hence, it is as-
sumed that this ring is commutative.
For any element v ∈ IJ , we can write v =

∑
k

xkyk such that xk ∈ I, yk ∈ J . But, I, J ⊆ R.

As yk ∈ J ⊆ R, y ∈ R, hence, xkyk ∈ I . Similarly, as xk ∈ I ⊆ R, xk ∈ R, and xkyk ∈ J . As
xkyk ∈ I and xkyk ∈ J , xkyk ∈ I ∩ J .
As this is valid for any k and I ∩ J is a ring, hence, v ∈ I ∩ J . Therefore, for any
v ∈ IJ, v ∈ I ∩ J =⇒ IJ ⊆ I ∩ J.

Consider an element t ∈ I ∩ J . As t ∈ I ∩ J , t ∈ I and t ∈ J . Also, t = 1 · t where
1 ∈ R is the multiplicative identity element.
As I + J = R , we can write 1 = u+ v where u ∈ I and v ∈ J .

=⇒ t = 1 · t = (u+ v) · t = u · t+ v · t

But, u ∈ I and t ∈ J . Hence, u · t ∈ IJ and similarly, as v ∈ J and t ∈ I =⇒ v · t ∈ IJ .
Therefore, their sum u · t + v · t = t ∈ IJ (as IJ is also a ring) for any t ∈ I ∩ J which
implies I ∩ J ⊆ IJ.
As IJ ⊆ I ∩ J and I ∩ J ⊆ IJ , IJ = I ∩ J.
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