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Question 1

Let S be a finite set and F be set of all bijections from S to S. Show that F along with
the composition operation is a group.

Solution

For proving the above result, we will first provide some standard results for functions.

Lemmall Iff: X - Y,g:Y — Zand h: Z — W are functions, then (hog)o f =
ho (go f), where o represents the composition operator.

Proof. Note that for every x € X we have,

[(hog)o fl(x) = (hog)(f(x))

Therefore, (hog)o f=ho(go f). ]

Lemma 1.2. Suppose f: X —+ Y and g : Y — Z are bijections. Then their composition
h=(go f): X — ZIisalso abijection.



Proof. We will first show that & is injective or we will show that if h(x) = h(z'), then
we musht have that x = 2/. Suppose that h(z) = h(z). Using the definition of & this
implies that ¢g(f(z)) = g(f(z')). Since, both f and g are injective therefore,

9(f(2)) = g(f(2) = f(z) = f()

— =21

Hence, h 1s injective.
Now, we will show that & is surjective. Since, f and ¢ are both surjections, we have
that f(X) =Y and ¢g(Y) = Z. Therefore, we have that

h(A) = (g f)(A)
={z€ Z|(go f)(z) = z,for some z € X'}
={z € Z|(g9(f(z)) = z,for some z € X}
= {z € Z|(9(y) = z,for some y € f(X)}

= 9(f(X))
=g(Y)
=7

Hence, h 1s surjective as well and hence h 1s bijective. O

Lemma 1.3. There exists an inverse for every bijective function f : X — Y which is
also bijective.

Proof. Define f~! : Y — X by letting f~'(y) be the unique z in X for which f(z) = y.
(Since, f is surjective there is at least one such z and since f is injective, there is at
most one such x. Hence, it is unique). For f~! to be the inverse of f we need to show
thatforallz € X andy €Y,

f(f(@) =zand f(f(y) =y

Now, for z € X, we have f~(f(z)) = = (since [f~'(f(z)) is defined to be the element
that f sends to f(z)). Similarly, fory € Y, f(f~'(y)) = y (since f~!(y) is defined to be
the element that f sends to ). Therefore, f~! is an inverse of f.

GP5 2



Now, for proving that f~! is also bijective, we will prove it's injectivity and surjectivity
independently. For injectivity, we need to show that if f~'(y;) = f~!(y) then y; = y».
Since, [~ (y1), f ' (y2) € X, we can fix ¥,z € X such that, f~!(y;) = z; and f~!(y,) =
x9, With the assumption that 2y = x,. This implies that f(z;) = f(x2). Substituting
f~Yy1) = z1 and f(ys) = 2o, We can see that

FU ) = F(F 7 (w2)

== Y1 = Y2

Hence f~!is injective. Now, for proving surjectivity, we need to show that for any
arbitrary z € X, we can find ay € Y such that f~!(y) = x. Since, f is bijective, there
exists a z € X such that f(z) = y. Therefore, we get z = f~'(f(z)) = 2. Therefore,
we can find for any arbitrary z € X, ay = f(x) € Y which gets mapped to x by f~1.
Hence, we proved the surjectivity and therefore, f=! is bijective. O

Now, to prove that F' along with the composition operation is a group, we will check
for each of the properties of the group, one by one.

* Closure: We need to show that for every f, g € F, there is a unique h € F such
that fog=h.

Proof. We need to show two things here, first is that 4 1s unique and other that
h € F. We have with us bijective functions f : S —+ Sand g : S — S. Note that,
domain of 4 1s same as domain of g which is S and at every s € S, h(s) 1suniquely
defined by f(g(h)) and hence hisunique. Now, for proving that h € F, we willuse
directly Lemma 1.2, which gives the result that 4 : S — S 1s a bijection. Hence,
closure is satisfied. O

+ Associativity: We need to prove that for every f,g,h € F, (hog)o f=ho(go f)
which is a direct result of Lemma 1.1. Hence, associativity is also satisfied.

+ Identity: We need to show that thereis I € F such that f oI = f for every f.

Proof. Choose I : S — S such that I(s) = sV s € S (identity function). It is
trivially a bijective function on S and hence I € F. Also, for every f € S, we
have [f o I](s) = f(I(s)) = f(s)Vs € Sand [T o f](s) = I(f(s)) = f(s) Vs € S.
Hence, the Identity property also gets satisfied. N
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* Inverse: We need to show that for every f € F, there exists g € F such that

fog=1I where I is the identity.

Proof. In other words we need to show that for all f € F there exists g € F such
thatforalls € S,

[f o gl(s) = I(s) = s

Using Lemma 1.3 we know that there exists an inverse for f, say f~! and there-
fore using the property of inverses [f o f~!(s) = f(f7'(s)) = sVs € S and
/7o fl(s) = f7'(f(s)) = sV s € S. Hence, the Inverse property is also satis-
fied. O

Therefore, F along with composition operation forms a group.
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Question 2

Let G be a non-commutative group and e € G be the identity element. The order of
an element g € G denoted as ord(g) is the smallest natural number s such that ¢°* = ¢
where

9= 999 .9

number of gis i

Let a and b be elements of G such that ord(a) = 7 and a®b = ba®. Prove that ab = ba.

Solution

ord(a) =7 = a" = e (by definition of ord)

a’b = a®(a®b)
= a%(ba®) (given)
= a*(ab)a® (associative property)
= a’(ba®)a® (given a*b = ba®)
= (a®b)a® (associative property)
= (ba®)a® (given a’b = ba?)
= ba’

Pre-multiplying both sides by a,

a®b = aba®

— ba® = aba® (given a’b = ba®)
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Post-multiplying both sides by a,

ba® = aba’
= ba(a’) = ab(a")
= ba(e) = ab(e) (a" =e)
= ba = ab (ae =e)

Alternative Solution:
We have ab = ba® and a” = e.
Pre-multiplying the first equation by a* and then post-multiplying it by a,

a*a®ba = a’ba = ba = a*ba* = ba = aa’ba* = a(ba®)a* = aba’a* = aba” = ab

Hence, ab = ba
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Question 3

Let Q[a, 8] denote the smallest subring of C containing rational numbers Q and the
element a = v2and g = V3. Lety = a + 3. Is Q[o, 8] = Q[]?

Solution

Yes. A subring of aring C is a subset of C that is also a ring in itself under the opera-
tions restricted to itself. (Wikipedia)

A 1ing 1s closed under addition and multiplication operations. Hence, any linear
combination of any rational number along with «, 8 and a8 € Q|a, 8]. This means

V€ Qla, f]

Ir,re,rs,rs €EQ | x=ri+ro-atr3-f4ry-af

Claim: Let A = {z |3 a,b,c,r € Qst.x = r + aa + b8 + caf}. Then A with addition
operation (+) and multiplication operation (x) form a ring and this ring is equal to

Qle, 5],

Proof. For any two elements xy,z5 € Ast. 2y = r + aya + bf + ciaf and oy = ry +
asa + by S + coarf5,

1+ 29 = (r1 + a1+ b1 8+ craf) + (re + asa + by + o)
= (T’l + 7“2) + (a1 -+ OJQ)OJ -+ (bl + bg)ﬁ -+ (Cl + 02)065
=r3+ aza + b3 + czaf

where, r3 = r; + 19,a3 = a; + az,b3 = by + by and ¢z = ¢; + ¢ and rs3, a3, b3, c3 € Q by
closure property of Q.

Hence, r; + o € A = + satisfies closure property in A. Other properties like
commutative, associative, additive identity(0) and existence of inverse can be easily
seen are satisfied for addition.

r12y = (r1 + a1 + b1 8 + craf)(ry + aza + bof + c23)
= (ri17r9 + 2ayas + 3b1bg + 6¢1¢2) + (r1a9 + 3bica + roaq + 3bacy )
+ (r1bg + roby + 2a1¢0 + 2a5¢1) 5 + (rica + rac1 + a1bs + ashy)af
=1y + aga + by + cya8
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https://en.wikipedia.org/wiki/Subring

where, ry = (rirg + 2a1as + 3b1bg + 6¢1¢2), a4 = (rias + 3byca + roa; + 3bacy), by = (r1by +
roby + 2a1¢o + 2aoc1), and ¢y = (ric + roc1 + a1by + agby) and ry, ay, by, ¢4 € Q by closure
property of Q

Hence, ;2o € A = x satisfies closure property in A. Other properties like com-
mutative, associative and multiplicative identity(1) can be easily seen are satisfied
for multiplication also. Also, it can be easily seen multiplication is distributive over
addition for A.

Hence, A forms a ring with + and x. Since, A € C = A is subring of C.

Consider Q[a, 8], since a, 5 € Qa, 5] = af € Q«, 5] by closure in multiplication.
Also, it implies, r + aa + bB3 + caB € Q|a, B]Vr,a,b,c € Q = A C Q[«, 8] by closure
of addition and multiplication. Hence, every set containing « and $ with rational
numbers forming subring in C must contain A as subset and since A forms subring
In C, smallest such setis A — Q[«, 5] = A. O

If Q[a, 5] = Q[v], then, every element in Q|a, §] must be present in Q[y] and vice-
versa.
Lemma: If y € Q[z], then Q[y] C QJx].
Proof: The set of rational numbers Q is common in both. As Q[z] isaring, and y € Q|x],
hence,Vz € Qlz], y + zand y - z € Q[z]. But, all elements of Q[y] can be expressed at
linear combination of sums and products of rationals and y. So, y and rationals along
with their sums and products € Q[z], Q[y] € Q[z].
Therefore, if we show that v € Q[«, 5] and simultaneously, «, 5 and af € Q[y], then,

Qla, 8] € Q] & QY] € Qla, 8] = Qla, 5] = Q]

The first part is obvious as 1 -« + 1 - § = v by definition, hence, v € Q[«, 5].
For the second part, as v € Q[y], hence,

vy =7%=542V6 € Q)] (multiplicative closure) = V6 = a8 € Q[y]

. Hence, let

§=V6-v=V6(V2+V3) =V12+ V18 =2V3+3V2

. d € Q[y] due to multiplicative closure.
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Now,
§—2y=V2=a = a Q]

. Also,
B=y—a = Q]

Therefore, as v € Qla, f] and «, § and a8 € Q[y], with the ring of rationals Q common,
these two subrings are equal.

Claim: Let A be the same set as in previous claim, then Q] 1s equal to the subring
formed by Ain C.

Proof. As~ € Q[v], hence,
v v =72 =5+2V6 € Q[ (multiplicative closure) = V6 = a8 € Q[]

. Hence, let

§=V6-7=v6(vV2+V3) =12+ V18 =2V3 + 32

Since,d € Q[y] due to multiplicative closure.
Now,
§—2y=V2=0a = ac Q[

. Also,
B=y—a = BcQ]

Since, a, f and af € Q[v], it implies their linear combination with rational numbers
must also belong to Q[v],

—> A C Q[] (by definition of A)

Since, A contains v and rational numbers, and also every ring containing ~ and ra-
tional numbers must have A as subset, hence minimal such ring containing v and
rational numbers is ring formed by A,

= Q[ =4
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Question 4

An element n of a ring R is called nilpotent if there exists j € N such that n/ = 0. An
element v of aring R is called a unit if there exists v € R such that uv = 1. Prove that
if r € R1is nilpotent, then 1 — r 1s a unit.

Solution

Since r is nilpotent, there exists j € N such that »/ = 0. Suppose that »™ = 0 for some
m € N.
Observationl: Vn e NandVr e Rr" € R.

Proof. We will show this by induction on n. For n = 1, this is trivially true. Suppose
that r"~! € R. Since, r* = "1 . r and R is closed under (-), therefore »* € R. Hence,
proved. O

Observation 2: Foranyr ¢ Rand foralln € W,>/=0'r € R.

Proof. We will show this by induction on n. For n = 0, this is trivially true. Suppose it
is true for n — 1. Since, Y.=¢ /= 320" 7 + v therefore using the above observation
that »” € R and the fact that (R, +) form a commutative group (which implies that R

is closed under +), we get that Z ort € R. Hence, proved. O

Also, observe that (R, +) forming a commutative group implies that >/} r;, can be
permuted in any order to give the same result.

zmlz

Now, if wetakeu =1—r € Randv = ) 7] Using the above observations, we
know that v € R. Therefore we see that,

IL—r)1+r+r24+- 4™
L r 12 ) o (o (1) o (1)
+ (—r™)) {Using commutativity}

(
(
(1
1

{Using nilpotency}

Hence, we proved that there exists a v for any arbitrary « = 1 — r, such that wv = 1 or
1 —risaunit
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Question 5

Let I and J be ideals of a ring R such that I + J = R. Prove that IJ = I N J where
IJ={> aylxrel,ye J}

Solution

By definition of ideal: If x € I € Rand [ isan ideal, thenr-x € IVr € R.

Also according to Wikipedia, "when R is a commutative ring, the definitions of left,
right, and two-sided i1deal coincide, and the term ideal is used alone." Hence, 1t is as-
sumed that this ring is commutative.

For any elementv € I.J,we can writev = Y apyr such thatz, € I,y € J. But, I, J C R.

Asy, € JC R,y € R, hence, 2y, € I. Simifarly, asazy € I C R, o € R and zpy, € J. As
rpyr € Iand apy, € J, xpyp € 1N J.

As this is valid for any k& and I N J is a ring, hence, v € I N J. Therefore, for any
velJvelnJ = 1IJCINJ.

Consider an elementt € INJ. Ast e INnJ,t € Tandt € J. Also, t = 1.t where
1 € R1s the multiplicative identity element.
AsI+J=R,wecanwritel =u+ovwhereuelTandv € J.

= t=1t=(wu+v)-t=u-t+v-t

But,u € Tandt € J. Hence, u -t € I.J and similarly,asv e Jandtel = v-te lJ.
Therefore, theirsumu -t +v-t =t € I.J (as 1J is also a ring) for any ¢t € I N J which
impliesINJ C 1J.

AsIJCInJandINJCIJ,1J=1INJ.
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