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Question 1

Let S = {(a, b, c)|a, b, c ∈ Z} be the set of all triplets of integers. Show that |S| = ℵ0.

Solution

Consider function f : N2 → N,
f((x, y)) = 2x(2y − 1)

Let for some (x1, y1), (x2, y2) ∈ N2, f((x1, y1)) = f((x2, y2))

⇒ 2x1(2y1 − 1) = 2x2(2y2 − 1)

⇒ 2x1 = 2x2 , 2y1 − 1 = 2y2 − 1

⇒ x1 = x2, y1 = y2

∴ ∀(x1, y1), (x2, y2) ∈ N2, f((x1, y1)) = f((x2, y2))⇒ x = y

Hence, f is injective.
Consider function f ′ : N→ N2,

f ′(x) = (0, x)

Let for some x, y ∈ N, f ′(x) = f ′(y),
⇒ (x, 0) = (y, 0)

⇒ x = y

∴ ∀x, y ∈ N, f ′(x) = f ′(y)⇒ x = y

Hence, f ′ is injective.
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Since there exist one one function from N to N2 and from N2 to N, there exist bi-
jection between them say, g : N2 → N.
⇒ |N| = |N2|
Consider function h : N3 → N2,

h((x, y, z)) = (x, g(y, z))

Claim: h is bijective.
Proof:

1. Injectivity
Let for some (x1, y1, z1), (x2, y2, x2) ∈ N3, h((x1, y1, z1)) = h((x2, y2, x2))

⇒ (x1, g(y1, z1)) = (x2, g(y2, z2))

⇒ x1 = x2, y1 = y2, z1 = z2 (g is injective)
∴ ∀X, Y ∈ N3, h(X) = h(Y )⇒ X = Y

Hence, h is injective.
2. Surjectivity
∀Y = (x, k) ∈ N2,∃X = (x, y, z), where(y, z) = g−1(k), s.t.

h(x, y, z) = (x, g(y, z)) = (x, k) = Y

∴ h is surjective
Since h is both injective and surjective,⇒ h is bijective.

Since there exist a bijection between N3 and N2,⇒ |N3| = |N2|
⇒ |N3| = |N|
∴ there exists a bijection between N3 and N, say F : N3 → N
Since, |Z| = |N|,⇒ there exists a bijection between Z and N, say N : Z→ N
Consider function Z : Z3 → N,

Z((x, y, z)) = F (N(x), N(y), N(z))

Claim: Z is bijective.
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1. Injectivity
let for some X, Y ∈ Z3, Z(X) = Z(Y ),
⇒ F (N(x1), N(x2), N(x3)) = F (N(y1), N(y2), N(y3))

⇒ N(x1) = N(y1), N(x2) = N(y2), N(x3) = N(y3), (F is injective)
⇒ x1 = y1, x2 = y2, x3 = y3, (N is injective)
⇒ X = Y

∴ ∀X, Y ∈ Z3, Z(X) = Z(Y )⇒ X = Y

Hence Z is injective.
2. Surjectivity
∀Y ∈ N,∃(x1, x2, x3) ∈ Z3, where xi = N−1(yi) for i = 1, 2, 3 and (y1, y2, y3) =

F−1(Y ), s.t.
Z((x1, x2, x3)) = F (N(x1), N(x2), N(x3)) = F (y1, y2, y3) = Y

∴ Z is surjective.
Since Z is both injective and surjective, Z is bijective.
∴ there exists a bijection between Z3 and N,
⇒ |Z3| = |N|
⇒ |Z3| = ℵ0 (|N| = ℵ0|)Hence proved.

3



Question 2

For any a, b, c, d 6∈ {−∞,∞}, show that |[a, b]| = |[c, d]| where [x, y] is the set of all real
numbers between x and y

Solution

Consider the function f : [a, b]→ [c, d],
f(x) = c+

x− a

b− a
(d− c) (2.1)

Since linear functions are bijective in their range and f is linear with range [c, d]

⇒ f is a bijective function.
As there exist a bijective function between [a, b] and [c, d],
⇒ |[a, b]| = |[c, d]|
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Question 3

Show that |[0, 1]| = ℵ1 where [0, 1] is the set of all real numbers between 0 and 1.

Solution

Consider function f : [0, 1]→ R,
f(x) = x

Since a linear function is injective, so f is injective.
Consider function g : R→ [0, 1],

g(x) =
1

1 + ex

Since, g is continuous function and g′(x) = −ex
(1+ex)2

< 0, ∀x ∈ R,
⇒ g is strictly decreasing function and hence is injective.
Since there exist a injective function from R to [0, 1] and from [0, 1] to R, there exist

a bijective function between [0, 1] and R
⇒ |[0, 1]| = |R|
⇒ |[0, 1]| = ℵ1 (|R| = ℵ1)
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Question 4

Show that |{0, 1}∗| = ℵ1 where {0, 1}∗ is the set of all binary strings of infinite length.

Solution

The main idea of the solution revolves around proving that there exists a one-one
mapping from the set of all binary strings of infinite length to the power set of natu-
rals and vice-versa.
Observation-1 : There exists a one to one mapping from the set of all binary strings
of infinite length to power set of natural numbers.
Proof. Consider an arbitrary binary string of infinite length and define xi as the ith

element of the binary string, where each xi takes value of either 0 or 1 and i ∈ N.
Now, we will define a function f that maps this binary string (S) to a set of naturals
(say A) according to the rule that an integer i ∈ A iff xi = 1.

f(S) = {i | xi = 1} (4.1)
Also, it is easy to see that this is indeed a one-one mapping since if we choose two
different binary strings (say S1 and S2) then these will differ at some place say j and
therefore only one of the two sets f(S1) and f(S2) will contain j as it’s element and
hence,

S1 6= S2 ⇒ f(S1) 6= f(S2) (4.2)
Now, applying this function f to each element in the set of all binary strings will
produce a unique set of natural numbers which will belong to power set of naturals.
Hence, proved that this type of construction leads to a one-one mapping between set
of binary strings of infinite length and power set of naturals. �

Observation-2 : There exists a one to one mapping between the power set of naturals
to the set of all binary strings of infinite length.
Proof. Consider an arbitrary set of natural numbers (sayA) and by definition of power
set, it will be a part of the power set of N.
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Now, we will define a function that maps this set A to an element of the set of binary
strings of infinite length according to the rule that the ith element of the string i.e. Siis 1 if i ∈ A.

f(A) = S where Si = 1 if i ∈ A (4.3)
It is also easy to show the one-one characteristics of the mapping f , since if two
sets A and B from the power set of N differ in atleast one element (say x) then the
corresponding binary strings will also differ in value of Sx. Hence,

A 6= B ⇒ f(A) 6= f(B) (4.4)
Now applying this function f to every element in the power set of N will lead to a
unique binary string. Hence, proved that this type of construction provides a one to
one mapping between the power set of N to the set of all binary strings of infinite
length. �

Conclusion: From the above two Observations, we conclude that there exists a one-
one mapping from the set of all binary strings of infinite length to the power set of
naturals and a one-one mapping from the set of power set of naturals to the set of all
binary strings of infinite length.
Hence, by Cantor-Bernstein-Schroeder Theorem, there exists a bijection between the
the sets of all binary strings of infinite length andP(N) and hence they have the same
cardinality i.e. ℵ1.
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Question 5

Suppose R is a partial order on A and S be a partial order on B. Let L be a binary
relation on A×B defined as (a, b)L(a′, b′) iff

• a 6= a′ and aRa′

• a = a′ and bSb′.
Show that L is also a partial order on A×B. Is it a total order?

Solution

Showing that a particular relation in a partial order on a particular requires that re-
lation to be transitive, reflexive and anti-symmetric. So we will show that L is tran-
sitive, reflexive and anti-symmetric on the set A×B one by one.

• L is transitive : To show that L is transitive, we need to show the property that
any three elements a, b and c which belong to the set, if aLb and bLc then aLc.
To show this on this set, let’s take three elements (a0, b0), (a1, b1) and (a2, b2) such
that (a0, b0)L(a1, b1) and (a1, b1)L(a2, b2). We will show that (a0, b0)L(a2, b2).
Proof. Now, since the relation is piecewise, we will consider different cases to
account for that.
Case (a) : a0 6= a1 6= a1 ⇒ In this case the first condition that (a0, b0)L(a1, b1)implies that a0Ra1 and the second condition (a1, b1)L(a2, b2) implies that a1Ra2.
Now, since R is a partial order on A and hence is transitive, therefore a0Ra1 and
a1Ra2 implies that a0Ra2 and since a0 6= a2, therefore (a0, b0)L(a2, b2).
Case (b) : a0 = a1 6= a2 ⇒ In this case the first condition that (a0, b0)L(a1, b1)implies that b0Sb1 and the second condition (a1, b1)L(a2, b2) implies that a1Ra2.
Now, since R is a partial order on A and hence is transitive and reflexive there-
fore a0Ra1 (because of the reflexivity) and a1Ra2 implies that a0Ra2 and since
a0 6= a2, therefore (a0, b0)L(a2, b2).
Case (c) : a0 = a1 = a2⇒ In this case the first condition that (a0, b0)L(a1, b1) im-
plies that b0Sb1 and the second condition (a1, b1)L(a2, b2) implies that b1Sb2. Now,
since S is a partial order on B and hence is transitive, therefore b0Sb1 and b1Sb2implies that b0Sb2 and since a0 = a2, therefore (a0, b0)L(a2, b2).
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Case (d) : a0 = a2 6= a1 ⇒ In this case the first condition that (a0, b0)L(a1, b1)implies that a0Ra1 and the second condition (a1, b1)L(a2, b2) implies that a1Ra2.
Now, since R is a partial order onA and hence is anti-symmetric, therefore a0Ra1and a1Ra2 implies that a0 = a1 and therefore this cases reduces to Case (c).
Hence, proved that L is transitive relation. �

• L is reflexive : To show that L is reflexive, we need to show the property that for
any element (a, b) ∈ A×B, (a, b)L(a, b).
Proof. By definition of L, (a, b)L(a, b) iff bSb which is true because S is a partial
order on B and hence is reflexive in nature. Hence proved that L is reflexive in
nature. �

• L is anti-symmetric : To show that L is anti-symmetric, we need to show the
property that any two elements a b which belong to the set, if aLb and bLa then
a = b. To show this on this set, let’s take two elements (a0, b0) and (a1, b1) such
that (a0, b0)L(a1, b1) and (a1, b1)L(a0, b0). We will show that (a0, b0) = (a2, b2).
Proof. To prove this, we need to take two cases to exhaust all possibilities.
Case (a) : a0 = a1 ⇒ In this case the first condition that (a0, b0)L(a1, b1) implies
that b0Sb1 and the second condition (a1, b1)L(a0, b0) implies that b1Sa2. Now, since
S is a partial order on B and hence is anti-symmetric therefore b0Sb1 and b1Sb0implies that b0 = b1. Therefore, (a0, b0) = (a1, b1).
Case (b) : a0 6= a1 ⇒ In this case the first condition that (a0, b0)L(a1, b1) implies
that a0Ra1 and the second condition (a1, b1)L(a0, b0) implies that a1Ra0. Now,
since R is a partial order on A and hence is anti-symmetric, therefore a0Ra1and a1Ra0 implies that a0 = a1 and therefore this case reduces to the first case.
Hence proved that L is anti-symmetric in nature. �

We can show that L is not a total order in A×B since we can choose such a doublet of
pairs (p, q) and (r, s) such that neither p is related to r nor vice-versa. The existence of
such a doublet is guaranteed by R being a partial order on A. Hence, these two pairs
will not be related under L and hence L is not a total order.
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Question 6

Let R be a binary relation on N defined as aRb if b = 2ka where k is a non-negative
integer. Show that R is a partial order on N.

Solution

We can show that relationR is a partial order by showing that it is transitive, reflexive
and anti-symmetric in nature, which we will show one by one.

• R is transitive : To show that R is transitive, we need to show that for any three
elements a, b and c belonging to set N if aRb and bRc, then aRc as well.
Proof. From the above two relations, we get

aRb ⇒ b = 2k1a for some k1 ∈W (6.1)
bRc ⇒ c = 2k2b for some k2 ∈W (6.2)

Combining the equations (6.1) and (6.2) leads to
c = 2k1+k2a (6.3)

Now, let k1 + k2 = k, therefore since k ∈W by equation (6.3) we get aRc. Hence
proved that R is transitive. �

• R is reflexive : To show that R is reflexive, we need to show the property that
for any element a ∈ N, aRa.
Proof. We need to find a k ∈ Z such that a = 2ka. Choosing k = 0 will work and
hence, the relation R is reflexive in nature. �

• R is anti-symmetric : To show that R is anti-symmetric, we need to show the
property that any two elements a b which belong to the set, if aRb and bRa then
a = b.
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Proof. From the above two relations, we get
aRb ⇒ b = 2k1a for some k1 ∈W (6.4)
bRc ⇒ a = 2k2b for some k2 ∈W (6.5)

Combining the equations (6.4) and (6.5) leads to
a = 2k1+k2a (6.6)

Now, from the equation (6.6), we get k1 + k2 = 0 and since k1 and k2 belongs to
W. Therefore both of them have to be 0. Plugging k1 = k2 = 0 in equation (6.4) or
(6.5) yields a = b. Hence proved that R is anti-symmetric in nature. �

Hence, proved that R is a partial order on the set of N.
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Question 7

Let n be a positive integer. Consider the relation ≡n on Z such that a ≡n b ⇐⇒ a =

b mod n. Show that ≡n is an equivalence relation on Z. What are the equivalence
classes?

Solution

An equivalence relation must be reflexive, symmetric and transitive on the set Z. We
are assuming that mod n relation relates two elements whose difference is divisi-
ble by n i.e. a ≡n b iff n | a− b.
Otherwise, if we consider a mod n to be equal to the euclidean remainder that we get
after dividing a by n, then it will not be reflexive and symmetric. Ex: 2 = 5 mod 3 but
5 6= 2 mod 3 and 5 6= 5 mod 3.
Under such assumptions, always, n | a−b⇐⇒ a−b = kn where k ∈ Z. Also,−k ∈ Z as
subtraction is closed under addition and each element in Z has an additive inverse.
This implies that b − a = −kn ⇐⇒ n | b − a ⇐⇒ b = a ≡n. Hence, this relation is
symmetric.
As every integer a divides 0, n | 0⇐⇒ n | a−a ∀ a ∈ Z⇐⇒ a ≡n a. Hence, this relation
is reflexive.
Consider 3 numbers a, b, c, ∈ Z such that a ≡n b and b ≡n c. This implies, n | a − b

and n | b − c ⇐⇒ a − b = k1n and b − c = k2n. Adding both of these equations,
a− c = (k1 + k2)n⇐⇒ n | a− c⇐⇒ a ≡n c. ( k1 + k2 ∈ Z as addition is closed under Z ).
Hence, this relation is transitive and is an equivalence relation.
Consider a ≡n b and a = kn + r and b = ln + s where 0 ≤ r, s ≤ n − 1 are the
euclidean remainders. n | a − b =⇒ n | kn + r − ln − s =⇒ n | r − s. Now,
−(n− 1) ≤ r− s ≤ n− 1 =⇒ r− s = 0 as no other number is divisible by n. So, we see
that for any two integers to be related, their euclidean remainder must be the same.
There are n possible remainders.
So, there each n equivalence classes, each having integers leaving same remainder
when divided by n. An equivalence class of remainder r would be represented as
{x | x ∈ Z and x%n = r}where % gives the remainder left after euclidean division.
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Question 8

Consider the relation S on N such that aSb ⇐⇒ ab is a perfect square. Show that S
is an equivalence relation on N. What are the equivalence classes?

Solution

An equivalence relation must be reflexive, symmetric and transitive on the set N.
By definition, a perfect square is a number which can represented as a product of a
number with itself.
As a · a = a2 is a perfect square, we have aSa trivially. So, this relation is reflexive.
Consider a, b ∈ N such that aSb ⇐⇒ ab is a perfect square. Multiplication is commu-
tative over natural numbers, hence a · b = b · a is a perfect square. Hence, aSb⇐⇒ bSa

and the relation is symmetric.
Consider 3 natural numbers, a, b, c such that aSb and bSc ⇐⇒ ab is a perfect square
and bc is a perfect square. Let a · b = p2 and b · c = q2 where p, q ∈ N. This implies
ab2c = p2 · q2 =⇒ b2 | p2 · q2 =⇒ b | p · q =⇒ ac = (pq

b
)2 and ac ∈ N. So, ac is a perfect

square. Hence, this relation is transitive and is an equivalence relation.
Every number can be represented as a product of 2 numbers: a perfect square and
a square-free number. This is unique (From the fundamental theorem of arithmetic,
we have unique prime factorisation. Then the square-free part is product of all primes
which have odd powers and the perfect square is product of remaining factors i.e. x
is square-free means x can be represented as p1p2 . . . pi).Consider two naturals, a, b ∈ N such that ab is a perfect square. Let a = mx2 and
b = ny2 where m and n are square free and x2 and y2 are perfect square parts. As ab is
a perfect square, mn is also a perfect square (as rest of all factors are perfect squares).
Ex: 180 = (5) ∗ (6)2, 420 = (3 ∗ 5 ∗ 7) ∗ (2)2

It is easy to see, if m 6= n then, there are is at least one prime in m , not in n, which
means there product can’t have that prime twice. So, if mn is a perfect square, m = n.
This defines the equivalence class, that, there square-free part in prime factorisation
must be same.
Ex: {x | x ∈ N, x = mk2, k ∈ N} where m ∈ N and m is square free and fixed is an
arbitrary equivalence class on N.
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Question 9

There was an ambiguity in the definition of a well-ordering in the lectures. It is clar-
ified here.

A well-ordering R on set A is a partial order such that for every subset B ⊆ A, B
has an element m such that mRb for every b ∈ B.

In lecture 6, a partial order is shown to be a well-ordering twice: once during proof
of the implication that Axiom of Choice implies Zorn’s Lemma, and next during proof
of the implication that Zorn’s Lemma implies Well-Ordering Principle. Redo both
these proofs in light of the above clarification.

Solution

Axiom of Choice =⇒ Zorn’s Lemma

We have "g-set" as a subset of G of A such that G is well-ordered and for every a ∈ G:
g({c | cRa and c ∈ G and c 6= a}) = a

Let U be the union of all g-sets. We have to prove that U is well-ordered.

• Consider any subset V of U. V intersects one the g-sets W making up U because
W is a set of g-sets making up U.

• As W is well-ordered, W∩V has a least element, say, mW . Suppose, there is m ∈ V

such that mRmw.
• If m ∈ W , then mwRm showing that m = mw due to anti-symmetric property.
• If m /∈ W,∃ g-set H such that m ∈ H , as ultimately m ∈ U and any super set of

V will contain m. This means m ∈ H\W,W is a initial segment of H (as 2 g-sets
are initial segments of each other), implying mwRm. Therefore, again m = mwand minimal element of V is mw. �
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Zorn’s Lemma =⇒ Well-Ordering Principle

• We have Z = {(B), RB | B ⊆ A and (A,RB) a partial order and (B,RB) a well-
ordering } and relationR is a partial order onZ relating initial segments of pair-
elements in Z .

• Let C be a chain on (Z,R) and U be the union of sets in C. RU is a relation such
that, if two elements in a chain C are related by some relationRC , only then aRUband vice-versa.

• We have to prove that RU is a well-ordering on U. Consider a subset V of U.
• Then, V ∩ U is not empty for some pair-element (C,RC) in the chain C because

V contains some elements from the union of the sets, U .
• As, RC is a well-ordering on C as defined in Z , V ∩ C ⊆ C has a least element,

say, mC due to well-ordering theorem.
• Let there be some element m ∈ V with mRUmC . Since, m ∈ U , there exists some

pair-element D, in chain C such that m ∈ D.
• Suppose (C,RC) is an initial segment of (D,RD). Then,mCRDm showingmCRUm,

which implies m = mC .
• Otherwise, let (D,RD) be an initial segment of (C,RC). Then m ∈ C which im-

plies, m ∈ V ∩ U . So, mCRUm, which again implies, m = mC . �
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