
CS340: Theory of Computation
Assignment 3 Solutions

Yatharth Goswami
Roll No. 191178

October 6, 2021

I Problem 1 Solution
In this problem, we were asked to devise a way to identify if the two strings a and b provided to us are
equal. For this we were asked to check if the two strings have the same length or not.

(a) For this part we first define the language to check if the length of strings a and b are equal. For
this we first introduce an extra symbol # to the alphabet, therefore Σ= {0,1,#}. Now, we define the
language, for this problem as L = {w1#w2 | |w1| = |w2|, w1,w2 ∈ {0,1}∗}. So, in order to find if two
strings a and b have the same length we will check if the string a#b belongs to the language L.
Now, we need to design PDA which accepts this language. Below is the PDA P = (Q,Σ,Γ,δ, q0,F)
which accepts the language L, with

• Q = {q0, q1, q2, q3}

• Σ= {0,1,#}

• Γ= {$, A}

• F = {q3}

q0 q1 q2 q3
ε, ε→ $

0,ε→ A

1,ε→ A

#,ε→ ε

0, A → ε

1, A → ε

ε,$→ ε

Figure 1: PDA for 1(i)

(b) Since we already know that |a| = |b|, we just need to check if the corresponding characters are
also the same. Consider this language L = {ww | w ∈ {0,1}∗}. If |a| = |b|, then a = b, iff ab ∈ L.

(c) We will claim that L = {ww | w ∈ {0,1}∗} is not a CFL and hence a PDA cannot be designed for
it. We will prove using the contrapositive form of the pumping lemma, which says that ∀p ≥ 0,
∃ w ∈ L, s.t. |w| ≥ p s.t. ∀w = uvxyz where |vxy| ≤ p and |vy| > 0, ∃ i ≥ 0, s.t. uvixyi z ∉ L, then L
is not a CFL.

• Given a p ≥ 0 by the opponent.

• We will choose the string w = 0p1p0p1p.

• Opponent gives a partition w = uvxyz with the above given constraints.

• We need to now come up with an i ≥ 0 such that uvixyi z ∉ L. For this, let us consider the
various possible cases.

– It might be the case that vxy appears completely in the first part of string (i.e. in the first
2p length). In this case, we will take i = 2, and consider the string uv2xy2z. Notice that
in this string since the length |vy| > 0 and ≤ p. The length of uv2xy2z increases by at
most p. Hence the midpoint of the string moves at most by p/2. We now say that string
y can be of two forms 1i | i ≥ 0 or 0i1 j | i, j ≥ 0. Notice in both the cases the string yz
starts with p number of 1s. Hence the first block of 1s (in 0p1p0p1p) will remain intact
in uv2xy2z as well. Now, since the first block of 1s will be moving to the right since we

1

are adding another v and y string in the first half, therefore if we consider the first block
of 1s (in 0p1p0p1p) to move by k = |vy| > 0, then midpoint will only move by k/2 ≤ p/2.
Hence, we can be sure that the second half will start with a 1. And since the first half
starts with a 0, this string cannot belong to L.

– It might be the case that vxy appears completely in the second part of string (i.e. in the
second 2p length). We In this case, we will take i = 2, and consider the string uv2xy2z.
Similar to the above explanation in this case the midpoint will be move by a distance
x/2 where x = |vy| to the right. Since x/2≤ p/2 and second block of 0s have length p, we
can be sure that the first half will end with a 0, while the second half will end with a 1.
Hence, this string cannot belong to L.

– In the third case vxy lies entirely in the middle segment of w (contains at least one
character from the first 2p and at least one character from the last 2p length). Note that
in this case, vxy can only be a part of the middle 1p0p segment since |vxy| ≤ p. In this
case, we will take i = 0. Consider the string uxz, this string will be of the form 0p1x0y1p

where x ≤ p and y≤ p and both cannot be simultaneously p since |vy| > 0. For the string
to have two equal halfs, the second half should start with p zeros and first half should
end with p ones, which is not possible. Hence, this string also cannot lie in L.

Hence by enumerating all possible cases, we showed that for each choice of partition, there exists
an i for which uvixyi z ∉ L. Hence, using pumping lemma we can say that L is not a CFL and
hence there will not exist any PDA which accepts L.

2

II Problem 2 solution
In this problem we were asked to show that L = {anb j ck | k = jn, j,k,n ≥ 0} is not context free. We will
employ the contrapositive form of pumping lemma for proving this which says that ∀p ≥ 0, ∃ w ∈ L, s.t.
|w| ≥ p s.t. ∀w = uvxyz where |vxy| ≤ p and |vy| > 0, ∃ i ≥ 0, s.t. uvixyi z ∉ L, then L is not a CFL.

• Opponent gives us a p ≥ 0.

• We choose the string w = apbpcp2
.

• He gives us a partition w = uvxyz with the above given constraints.

• Now there can be different cases possible. Say, |vy| = k > 0

– vxy contains only 1 symbol. In this case, suppose first if vxy is contained inside only a or b.
Without loss of generality, assume that vxy is contained completely inside the block of a′s. In
this case, we will choose i = 0 and the string uv0xy0z = ap−kbpcp2

which doesn’t belong to L
since p∗ (p−k) 6= p2 for k > 0. In the other case, if vxy lies entirely in the block of c’s. We will
again choose i = 0 and string uv0xy0z = apbpcp2−k again will not lie in L since p2 6= p2 − k
for k > 0.

– vxy contains of 2 symbols. In this case, suppose first that vxy contains both a and b. In this
case, we choose i = 0 and we get the string uv0xy0z = albmcp2

where both l ≤ p and m ≤ p
and both not simultaneously equal to p since we are removing vy with |vy| > 0. Therefore
l∗m < p2 and hence this string will not lie in L.

Now, consider the case when vxy lies between blocks of b and c. In this case, choosing
i = 0, will give uv0xy0z = apbp−k1 cp2−k2 . We also know that k1 + k2 = k > 0 and hence both
can’t be simultaneously 0. We claim that this string will not belong to set L. Suppose, on
contrary the string apbp−k1 cp2−k2 belongs to L, then we have the relation.

p∗ (p−k1)= p2 −k2

k2 = p∗k1

From the above equation, we get that if k1 = 0 then k2 = 0 but this can’t be true since
k1 + k2 = k > 0. In all the other cases, k2 + k1 = k1 ∗ (p+1)) = k. If we choose k1 anything
other than 0, we get that k > p, which can’t be true since k ≤ |vxy| ≤ p. Hence, we arrive at a
contradiction and the original string is not present in L.

– vxy cannot contain all the 3 symbols since then |vxy| > p since it will have to contain all the
b’s in the middle compulsorily. Hence, this case is not possible.

Therefore we proved that for each possible partition uvxyz we can choose i = 0 and get a string
uxz which is not in L. Hence L is not context free.

3

III Problem 3 Solution
In this problem, we were asked to provide the Context-free-grammar that will accept the provided
language.

(a) L1 = {aib j ck | i = j or i 6= k i, j,k ≥ 0}

Let us define a grammar G = (V ,Σ,P,S) in this way

• V = {S,S1,S2,S3,S4,S5,T1,T2}

• Σ= {a,b, c}

• Set of Production rules P:
S → S1 | S2
S1 → T1T2
T1 → aT1b | ε
T2 → cT2 | ε
S2 → aS2c | S3 | S4
S3 → S3c | S5c
S4 → aS4 | aS5
S5 → bS5 | ε

• Start State = S

Description of each non-terminal

• S generates all strings in L.

• S1 generates all strings of the form aib j ck | i = j,k ≥ 0.

• T1 generates all strings of the form anbn | n ≥ 0.

• T2 generates all strings of the type cn | n ≥ 0.

• S2 generates all strings of the form aib j ck such that i 6= k and i, j,k ≥ 0.

• S3 generates all strings of the form bi c j | i ≥ 0, j > 0.

• S4 generates all strings of the form aib j | i > 0, j ≥ 0.

• S5 generates all strings of the form bi | i ≥ 0.

(b) Given a grammar G = (V ,Σ,P,S) with the set of production rules as
S → BSB | B | ε
B → 00 | ε
Let us apply the algorithm to convert into CNF.

• In the first step of conversion to CNF, we will remove any instance of start state on the right
hand side. We get the new set of production rules as follows by introducing a new start state
S0
S0 → S
S → BSB | B | ε
B → 00 | ε

• Removing ε transitions. First we remove the transition B → ε

S0 → S
S → BSB | B | BS | SB | ε

4

B → 00
Note that S → S will also be added above but it is equivalent to just S. Hence we can remove
it as well.
Now, removing the transition S → ε

S0 → S | ε
S → BSB | B | BS | SB B → 00

• Removing the single variable rule. Removing the transition S → B first
S0 → S | ε
S → BSB | BS | SB | 00
B → 00
Now, removing the transition S0 → S.
S0 → BSB | BS | SB | 00 | ε
S → BSB | BS | SB | 00
B → 00

• Shortening the RHS. Removing the rule S0 → BSB and the rule S → BS, by introducing a
new variable V → BS.
S0 →V B | BS | SB | 00 | ε
S →V B | BS | SB | 00
V → BS
B → 00

• Adding variables. In this step we will remove the rules like B → 00, S0 → 00 and S → 00,
using two new variables U1 and U2.

S0 →V B | BS | SB | U1U2 | ε
S →V B | BS | SB | U1U2
V → BS
B →U1U2
U1 → 0
U2 → 0

The Chomsky normal form gives a grammar G′ = (V ′,Σ,P ′,S0), with the final set of production
rules P ′ as:

S0 →V B | BS | SB | U1U2 | ε
S →V B | BS | SB | U1U2
V → BS
B →U1U2
U1 → 0
U2 → 0

and V ′ = {S0,S,B,U1,U2,V }.

5

