CS340: Theory of Computation Assignment 4 Solutions

Yatharth Goswami Roll No. 191178

November 8, 2021

I Problem 1 Solution

In this problem, we were asked to find if a language is decidable or not.

• $L_1 = \{ \langle M, N \rangle \mid M, N \text{ are two TMs and M takes fewer steps than N on input } \epsilon \}$

We will show that L_1 is **undecidable** using technique of reduction. Consider the langugage

$$
L' = \{ \langle M \rangle \mid M \text{ accepts } \epsilon \}
$$

We will first show that L' is undecidable.

Proof. We will show this using the Rice theorem. Consider the property P such that $P(L(M)) = 1$ iff $L(M)$ contains the string ϵ . We know that there exists TMs which do not contain ϵ in their language (eg: a TM that rejects every string) and also TMs that do contain ϵ (eg: a TM that accepts every string) in their language. Hence this is a non-trivial property of languages of Turing Machines. Hence, using Rice Theorem, we have that L' is undecidable. \Box

Now, we will use the fact that L' is undecidable and reduce it to our language L_1 to show that L_1 is undecidable.

Claim 1.0.1. $L' \leq mL_1$

Proof. We will construct a computable function *f* that takes an input 〈*M*〉 and produces an output $\langle N_1, N_2 \rangle$ such that N_1 takes fewer steps than N_2 on ϵ iff $\epsilon \in L(M)$. Now we will describe the reduction function.

Input: $\langle M \rangle$

- **–** Construct a TM *N*¹ that does the following on seeing an input *x* does the following
	- * If $x \neq \epsilon$ then reject.
	- $*$ If $x = \epsilon$ then simulate *M* on ϵ , accept if *M* accepts and loop infinitely in other cases. (This can be achieved by moving to a self looping state in finite state machine and then just moving the tape head to right in future).
- **–** Construct a TM *N*² that loops infinitely on any input, including *ϵ*. (This can also be achieved using similar technique as told above).

Output: $\langle N_1, N_2 \rangle$

Proof of Correctness:

It is easy to see that *f* halts since all of the steps in the algorithm are halting in nature. Now, Consider the two cases,

− ϵ ∈ *L*(*M*) → *N*₁ accepts ϵ in finite number of steps, which in turn implies that *N*₁ takes fewer steps than N_2 on ϵ .

– $\epsilon \notin L(M)$ → N_1 goes into infinite loop on ϵ and this in turn implies that N_1 does not take fewer steps than N_2 on epsilon.

Therefore from the above argument, we can say that N_1 takes fewer steps than N_2 on ϵ iff $\epsilon \in L(M)$ and hence $L' \leq_m L_1$. \Box

Using the above claim and the fact that L' is undecidable, we get that L_1 is undecidable. Hence proved that the language L_1 is undecidable.

• $L_2 = \{ \langle M \rangle \mid M \text{ takes at most } 2^{340} \text{ on some input} \}$

We will show that this language is **decidable**. To show this, we will construct a halting TM *H* that does the following

Input: $\langle M \rangle$

- Run *M* on every input string of length at most 2^{340} for at most 2^{340} steps.
- **–** If *M* accepts any of these inputs then accept, else reject.

Notice that the above turing machine is halting for any input, since it executes finite number of steps (2^{340}) on each of the finitely many (2^{340}) strings. Also notice that the algorithm is correct since the bits after the length 2^{340} are not of value to us as if any input gets accepted within 2^{340} steps, then we would have read at most 2^{340} bits from the input and hence taking strings of length at most 2^{340} suffices.

• $L_3 = \{ \langle M \rangle \mid \text{there are infinitely many TMs equivalent to } M \}$

This language is **decidable**, since every TM *M* has infinitely many TMs equivalent to it. An easy way to see this claim is to add dead states to the finite control of the given TM *M* and this way we can generate infinitely many TMs all equivalent to *M*. Hence, every TM is accepted (if the input string is a valid encoding of some TM).

• $L_4 = \{ \langle M, N \rangle \mid L(M) \cap L(N) \text{ is infinite} \}$

We will prove that this language is **undecidable**. Consider the langugage

$$
L' = \{ \langle M \rangle \mid L(M) \text{ is infinite} \}
$$

We will first show that L' is undecidable.

Proof. We will show this using the Rice theorem. Consider the property P such that $P(L(M)) = 1$ iff $|L(M)|$ is infinite. We know that there exists TMs which have finite $|L(M)|$ (take a language which rejects all the inputs) and also TMs which have infinite $|L(M)|$ (take a language which accepts all inputs) and hence this is a non-trivial property of languages of Turing Machines. Hence, using Rice Theorem, we have that L' is undecidable. \Box

Now, we will use the fact that L' is undecidable and reduce it to our language L_4 to show that L_4 is undecidable.

Claim 1.0.2. $L' \leq mL_4$

Proof. We will construct a computable function f that takes an input $\langle M \rangle$ and produces an output $\langle N_1, N_2 \rangle$ such that $L(N_1) \cap L(N_2)$ is infinite iff $L(M)$ is infinite. Now we will describe the reduction function.

Input: 〈*M*〉

- $-$ Set $N_1 = M$.
- $-$ Construct a TM which accepts all the inputs (say M_{all}).
- $-$ Set $N_2 = M_{all}$.

Output: $\langle N_1, N_2 \rangle$

Proof of Correctness:

It is easy to see that *f* halts since all of the steps in the algorithm are halting in nature. Now, Consider the two cases,

- **–** *L*(*M*) is infinite. This leads to *L*(*M*)∩Σ [∗] being infinite. Therefore *^L*(*N*1)[∩] *^L*(*N*2) is infinite.
- $-$ *L*(*M*) is finite. This leads to *L*(*M*)∩ $Σ^*$ being finite. Therefore $L(N_1) ∩ L(N_2)$ is finite.

Therefore from the above argument, we can say that $L(N_1) \cap L(N_2)$ is infinite iff $L(M)$ is infinite and hence $L' \leq_m L_1$. \Box

Using the above claim and the fact that L' is undecidable, we get that L_4 is undecidable. Hence proved that *L*⁴ is undecidable.

II Problem 2 solution

In this problem, we are given a language L, such that L is Turing Recognisable while \bar{L} is not. Now, we were asked to comment on the language

$$
L' = \{0w \mid w \in L\} \cup \{1w \mid w \notin L\}
$$

We will show that both L' and $\bar{L'}$ are non-TR languages. We will prove this using contradiction.

Let us look at L' first. Assume on contrary that L' is Turing-recognisable. This means that there exists a TM *M* such that $L' = L(M)$. Now, using this we will construct another TM *N*, in this way -> On receiving any input string w , N appends 1 to the front of w and then passes it through M . It accepts if *M* accepts. We will now show that $L(N) = L$. First note that any string *w* which lies in *L* will be accepted by *N* because all strings of the form $1w$ where $w \notin L$ are a part of $L(M)$. From this we get that $\bar{L} \subseteq L(N)$. Now, notice the fact that any string *w* being accepted by *N*, means 1*w* is accepted by *M* and it happens only if $1w \in L(M)$ or $w \in \overline{L}$. From this, we obtain that $L(N) \subseteq \overline{L}$. Hence, we get that $L(N) = \overline{L}$. This gives us a contradiction as \bar{L} was non-TR. Hence our assumption was wrong and L' is non-TR.

Similar to the above method we will now show that $\bar{L'}$ is also non-TR. First notice that $\bar{L'}$ will look like

$$
\bar{L'} = \{\epsilon\} \cup \{0w \mid w \notin L\} \cup \{1w \mid w \in L\}
$$

Now, assume on contrary that $\bar{L'}$ is Turing-recognisable. This means that there exists a TM M such that $L' = L(M)$. Now, using this we will construct another TM N, in this way -> On receiving any input string *w*, *N* appends 0 to the front of *w* and then passes it through *M*. It accepts if *M* accepts. We will now show that $L(N) = \overline{L}$. First note that any string *w* which lies in \overline{L} will be accepted by *N* because all strings of the form 0*w* where $w \notin L$ are a part of $L(M)$. From this we get that $\overline{L} \subseteq |L(N)|$. Now, notice the fact that any string *w* being accepted by *N*, means 0*w* is accepted by *M* and it happens only if $0w \in L(M)$ or $w \in \bar{L}$. From this, we obtain that $L(N) \subseteq \bar{L}$. Hence, we get that $L(N) = \bar{L}$. This gives us a contradiction as \overline{L} was non-TR. Hence our assumption was wrong and L' is non-TR.

Hence, we can say that L' and $\bar{L'}$ are both non-TR and hence undecidable as well.

III Problem 3 Solution

In this problem, we were asked to prove the undecidability of the following languages.

• *INFINITE_{TM}* = $\{\langle M \rangle | M$ is a TM and $L(M)$ is an infinite language}

We will show that *INFINITE_{TM}* is undecidable using Rice Theorem. Moving ahead, I will assume here that finding if $\langle M \rangle$ denotes a turing machine is decidable problem (If not, the problem *INFINITE_{TM}* is as it is undecidable). For showing this, consider the property *P* such that $P(L(M)) = 1$ iff $|L(M)|$ is infinite. We know that there exists TMs which have finite $|L(M)|$ (take a TM which rejects all the inputs) and also TMs which have infinite |*L*(*M*)| (take a TM which accepts all inputs) and hence this is a non-trivial property of languages of Turing Machines. Hence, using Rice Theorem, we have that we have that *INF IN ITETM* is an undecidable language.

• $ALL_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \Sigma^* \}$

We will show that ALL_{TM} is undecidable using Rice Theorem. Moving ahead, I will assume here that finding if $\langle M \rangle$ denotes a turing machine is decidable problem (If not, the problem ALL_{TM} is as it is undecidable). For showing this, consider the property *P* such that $P(L(M)) = 1$ iff $L(M) = \Sigma^*$. We know that there exists TMs which do not have $L(M) = \Sigma^*$ (take a TM which rejects all the inputs) and also TMs which have $L(M) = \Sigma^*$ (take a TM which accepts all inputs) and hence this is a non-trivial property of languages of Turing Machines. Hence, using Rice Theorem, we have that we have that *ALLTM* is an undecidable language.