
CS345: Algorithms - II
Assignment 3 Solutions

Aditi Goyal - 190057
Yatharth Goswami - 191178

November 14, 2021



I Problem 1 Solution
In this problem, we were asked to modify the Ford Fulkerson algorithm to achieve
a polynomial running time in size of input - O (m2 log cmax) and provide time
complexity analysis of the modified algorithm. We start with the pseudocode of the
modified algorithm. Algorithm 1 described below is the modified Ford-Fulkerson
algorithm.

1.1 Notations
• Capacity of path → This represents the minimum of the capacities of all the

edges present in a path.

• G = (V ,E)→ This represents the original graph G, for which max-flow is to
be calculated.

• G f = (V ,E f )→ This represents the residual graph with respect to graph G
and flow f .

• cmax → This represents the value of max capacity edge in the graph G.

• fmax → This represents the value of max flow in graph G.

• c(x, y)→ This represents the capacity of edge (x, y) in graph G.

1.2 Pseudocode for finding max flow

Algorithm 1: Algorithm to find max flow (Max-cap-FF algorithm)
Input: Graph G, source vertex s and sink t
Output: Max flow in the graph G, f

1 Function Max-cap-FF {G, s, t}:
2 f ← 0
3 while there exists a path in G f do
4 Let P be a max capacity path in G f
5 for each edge (x, y) ∈ P do
6 if (x, y) is a forward edge then
7 f (x, y)← f (x, y)+ capacity(P)

8 if (x, y) is a backward edge then
9 f (y, x)← f (y, x) - capacity(P)

10 Update G f

11 return f

1



Algorithm 2: Algorithm to find max flow (Poly-FF algorithm)
Input: Graph G, source vertex s and sink t
Output: Max flow in the graph G, f

1 Function Poly-FF {G, s, t}:
2 f ← 0
3 cmax ← maximum capacity of any edge in G
4 k ← cmax
5 while k ≥ 1 do
6 while there exists a path of capacity ≥ k in G f do
7 Let P be any path in G f with capacity at least k
8 for each edge (x, y) ∈ P do
9 if (x, y) is a forward edge then

10 f (x, y)← f (x, y)+ capacity(P)

11 if (x, y) is a backward edge then
12 f (y, x)← f (y, x) - capacity(P)

13 Update G f

14 k ←⌈ k
2 ⌉

15 return f

1.3 Proof of Correctness
We will first prove that for any graph G, the worst case number of augmenting
paths used in the algorithm 1 is upper bounded by the worst case number of
augmenting paths used in the algorithm 2. For any graph G, consider the sequence
of paths chosen by algorithm 1. We can choose exactly the same sequence of paths
in algorithm 2 as well because at line 7 (in algorithm 2), we are guaranteed that
there exists a path of capacity ≥ k. Since, we can consider any path with capacity
≥ k so we consider the max capacity path which is chosen by algorithm 1. In this
way, we can continue and choose the same path chosen by algorithm 1 at every
stage. In the time complexity analysis, we will prove that number of augmenting
paths in algorithm 2 is bounded by O (m log2 cmax), thus, bounding the number of
augmenting paths in algorithm 1 by O (m log2 cmax).

Next, we will focus on proving the correctness of the Poly-FF algorithm. First we
will show that the algorithm will terminate in finite number of iterations. Each
iteration of the while loop at line 6 strictly increases the flow in the graph G (since
source only has forward edges and hence flow from source will always increase).
Also, the total flow in the graph is bounded by max flow, which is finite (value of
min-cut), so the algorithm will terminate in finite number of steps.

Next, we will show that this algorithm will return max-flow in the graph G. The
Ford-Fulkerson algorithm terminates when there is no s− t path in residual graph
G f . If we show that on termination of Poly-FF algorithm, no s− t path is present
in G f , the correctness of this algorithm follows from max-flow min-cut theorem.
A sketch of the proof is as follows, we will consider the s− t cut defined by the set
of nodes which are reachable from s in residual graph (call set A) on termination

2



of Poly-FF algorithm and prove that the flow along this cut will be equal to it’s
capacity. Similar to the proof shown in class, every outgoing edge from the set
A, will carry flow equal to it’s capacity as if not we will reach a contradiction of
having selected every reachable node from source s to set A. Similarly, all the in-
coming edges to set A will carry flow of 0, since otherwise there will be a backward
outgoing edge in the residual graph and hence we again arrive at contradiction
of having selected every reachable node from source s to set A. Now, since every
flow is less than or equal to capacity of any cut and we found a flow equal to capac-
ity of a cut, by maxflow-mincut theorem we get that the flow is max-flow in graph G.

Now, we show that on termination of Poly-FF, no s− t path is present in G f .
In the last iteration of loop at line 5, k = 1. The while loop at line 6 terminates
when there is no s− t path of capacity ≥ 1. Since capacities are integers, any s− t
path has capacity ≥ 1. Saying no s− t path of capacity ≥ 1 is present is equivalent
to saying no s− t path is present.

Hence, the algorithm runs in finitely many steps and returns the correct value of
max-flow, hence the correctness.

1.4 Time complexity analysis
Claim 1.4.1. The while loop at line 5 (outer while loop) executes for O (log2 cmax)
times only.

Proof. k is set to cmax initially and at line 14, we halve k. So, while loop at line 5
gets executed for O (log2 cmax) iterations.

Claim 1.4.2. Let f be the value of flow after the end of all iterations of inner while
loop for a particular value of k, say k0. Then, we have the relation

f ≥ fmax −mk0

where fmax is the value of maximum (s− t) flow in graph G = (V ,E).

Proof. Consider the situation when all iterations of inner while loop for a particular
value of k, say k0 have executed. Define graph G′

f as G′
f = (V ,E′

f ), where E′
f

consists of those edges which have a weight ≥ k0 in G f . Define set A as set of all
node reachable from s in G′

f . Note that t ∉ A because otherwise there would have
been a path in G′

f with all the edges on the path having weight ≥ k0. This path
would also be present in G f because E′

f ⊆ E f (refer to Notations sub-section for
E f ). This contradicts our assumption that all iterations of inner while loop are
done because still a path with capacity ≥ k0 is present in G f . Define A′ = V − A.
Consider the s− t cut (A, A′). We will show that

f ≥ capacity(A)−mk0

For showing this, we have that

f = fout(A)− f in(A)
= ∑

(x,y)∈E
x∈A,y∈A′

f (x, y)− ∑
(x,y)∈E

x∈A′,y∈A

f (x, y)

3



We will first show a bound for the flow along any outgoing edge from set A to set A′

in G. For any edge (x, y) in G, where x ∈ A and y ∈ A′, f (x, y)> c(x, y)−k0. Assume
that this is not the case, i.e. f (x, y)≤ c(x, y)−k0. Then, in G f , we will have a forward
edge (x, y) with weight = c(x, y)− f (x, y)≥ k0 =⇒ (x, y) ∈ E′

f . Also, by our construc-
tion of set A, x is reachable from s in G′

f and (x, y) ∈ E′
f implies y is reachable

from s in G′
f . This is a contradiction because y should have been in A, by definition.

We will next show a bound for the flow along any incoming edge to set A from set
A′ in G. For any edge (x, y) in G, where x ∈ A′ and y ∈ A, f (x, y)< k0. Assume that
this is not the case, i.e. f (x, y) ≥ k0. Then, in G f , we will have a backward edge
(y, x) with weight f (x, y)≥ k0 =⇒ (y, x) ∈ E′

f . Also, by our construction of set A, y
is reachable from s in G′

f and (y, x) ∈ E′
f implies x is reachable from s in G′

f . This
is a contradiction because x should have been in A, by definition.

We have that

f = ∑
(x,y)∈E

x∈A,y∈A′

f (x, y)− ∑
(x,y)∈E

x∈A′,y∈A

f (x, y)

From the bound proved for outgoing edges, we have

f ≥ ∑
(x,y)∈E

x∈A,y∈A′

(c(x, y)−k0)− ∑
(x,y)∈E

x∈A′,y∈A

f (x, y)

From the bound proved for incoming edges, we have

f ≥ ∑
(x,y)∈E

x∈A,y∈A′

(c(x, y)−k0)− ∑
(x,y)∈E

x∈A′,y∈A

k0

Thus,

f ≥ ∑
(x,y)∈E

x∈A,y∈A′

c(x, y)−k0(mincA +moutA)

where mincA is the number of incoming edges to A and moutA is the number of
outgoing edges from A. We have that mincA +moutA ≤ m. Now,∑

(x,y)∈E
x∈A,y∈A′

c(x, y)= capacity(A)

and by maxflow-mincut theorem, capacity(A)≥ fmax. Thus, we have

f ≥ fmax −mk0

4



Claim 1.4.3. For any fixed value of k, say k0 the inner while loop executes for O (m)
iterations only.

Proof. Note that before the start of the iteration of outer while loop with k = k0,
the value of k would have been 2k0 in the previous iteration and hence from claim
1.4.2, we have that f init ≥ fmax −2mk0 where f init is the flow before execution for
k = k0. Also note that when the inner while loop for k = k0 terminates we have
the condition that fend ≤ fmax, where fend is the flow after execution for k = k0.
Noticing the fact that each iteration of inner while loop increases the value of
flow by at least k0 (since we are choosing paths with capacity at least k0), there
cannot be more than 2m number of iterations of inner while loop for k = k0, as
otherwise we would have f > fmax. Hence proved at for each value of k, the number
of iterations of the inner while loop are O (m).

Claim 1.4.4. The time complexity of the Poly-FF algorithm is O (m2 log cmax)

Proof. Let us analyze the time complexities of different parts of the algorithm.

• Lines 2-4 can be done in O (m) time since we need to calculate the maximum
capacity among all edges which requires iterating over all the edges.

• The outer while loop (line 5) runs for O (log2 cmax) iterations as shown above.

• The inner while loop (line 6) runs for O (m) iterations for any value of k.

• Each iteration of the inner while loop (line 6) involves two things. First is
finding a path P with capacity above a certain threshold and then iterating
over the edges in path P and updating the edges of G f using edges in path
P. The first step of finding a path can be done by creating a new graph G′

with edges having capacity greater than or equal to the threshold from the
residual graph and then selecting a path in this graph using either BFS or
DFS traversal. The second step is just updating the capacities and flow along
them by iterating over them. All of this is O (m) in time complexity.

Since the inner while loop runs for O (m) iterations (for a particular value of k),
each of which takes O (m) in total, we have the running time of inner while loop
as O (m2). And since the outer loop runs for O (log2 cmax) iterations, each of which
runs the inner while loop once we have that the overall complexity of the algorithm
becomes O (m2 log2 cmax). Combining the complexity of lines 2-4, still leads to time
complexity being O (m2 log2 cmax). Hence shown that the Poly-FF algorithm results
in the desired time complexity.

Claim 1.4.5. The number of augmenting paths used in algorithm 1 is upper
bounded by O (m log2(cmax)).

Proof. We will use the fact that the number of augmenting paths used by algorithm
1 is upper bounded by the number of augmenting paths used by algorithm 2 (Refer
Poof of Correctness sub section). Notice that in algorithm 2, each execution of inner
while loop uses exactly 1 augmenting path and for any value of k, there are at most
O (m) iterations of inner while loop, this implies that for each iteration of outer
while loop, we see O (m) augmenting paths. Since, outer while loop executes for
log2(cmax) iterations, we have total augmenting paths seen by algorithm 2 to be
O (m log2(cmax)). Using the fact stated at the start of the proof, we have that number
of augmenting paths used by algorithm 1 is upper bounded by O (m log2(cmax)).

5



Claim 1.4.6. Algorithm 1 runs in polynomial time.

Proof. Algorithm 1 is a polynomial time running algorithm in input size because
total number of iterations of the while loop (equal to the number of augmenting
paths used) are polynomial (O (m log2(cmax))) as proved above and in each iteration,
we need to find max capacity path which can be done by Dijkstra’s algorithm, which
also takes polynomial time (O (m+n logn)). Other operations in the while loop are
also polynomial: updating the flow and residual network can also be achieved in
polynomial time O (m).

Hence shown that choosing max capacity path in every iteration of ford-
fulkerson algorithm runs in polynomial time in size of inputs.

6


