CS345: Algorithms - |l
Assignment 1 Solutions

Aditi Goyal - 190057
Yatharth Goswami - 191178

August 21, 2021

I Problem 1 Solution

In this problem, we were asked to devise a more optimized algorithm for computing
a set of non dominated points in two dimensions.

1.1 Pseudocode for finding non-dominated points

Algorithm 1: Algorithm to find non-dominated points

Input: Set of n distinct points in a plane, S
Output: Set of non dominated points present in S

1 Function FindPoints(S):
2 if |S| <1 then

3 L return S
4 | xp; — XMedian(S) > x median of points in S
5 | Sp—1{
6 | Sp—{}
7 | Ymax — -INF > Initialising with a large negative value
8 | p < Variable to store the point to be removed
9 for point in S do
10 if point.x = x,, then
11 Sgr — SrU {point}
12 if point.y = ypq. then
13 Ymax — point.y
14 p — point
15 else
16 L S, — SpuU {point}
17 for point in Sy, do
18 if p dominates point then
19 L S, — S1\ {point}
20 for point in Sg do
21 if p dominates point then
22 L Sr — Sg\ {point}

23 | Sgp—Sg\ {p}

24 | R — FINDPOINTS(SR)
25 | L — FINDPOINTS(SL)
26 return R U LU {point}

1.2 Assumptions
1. For any 2 points (x1,y1),(x2,y2) €S, x1 # x9 and y; # yo.

2. On any call of the function FindPoints, there is at most one point in S which
lies on the x median of all the points in S.

1.3 Overview of Algorithm

We have used the divide and conquer algorithm described in the class, but with
a slight modification. The problem with the naive divide and conquer algorithm
was that not all of the recursive sub-procedures were spent in finding the non-
dominated points of the original problem. We can see that some of the were
returning the set of points which were not actually non-dominated in the original
problem.

We tried to resolve this issue in the naive algorithm by trying to find at least
one non-dominated point of the original problem in every recursive call. We used
the fact that on splitting the problem into two parts the point with the maximum
y-coordinate in the right half will always be a non-dominated point of the original
problem. Hence, removing this point and the set of points dominated by it and
continuing solving the sub-problems ensures that we remove at least one non-
dominated point of the original problem in each recursive call.

Now, since there are 2! recursive calls at the i*" level of the recursion tree, this
will give us a bound of log/ on the total recursive depth. This argument is still not
completely concrete and hence the detailed proof of correctness and time complexity
is provided below.

1.4 Proof of correctness

For establishing the correctness of the algorithm, we need to show that we are
getting all the non-dominated points of the original problem and no extra point.
Let’s try to prove this as a claim.

Claim 1.4.1. Algorithm 1 returns all the non-dominated points from the original
set of points and no extra point.

Proof. Our algorithm first divides the original problem into two halves based on
the x-median and then selects the point with the maximum y-coordinate as one of
the non-dominated points. We claim that this point is definitely a non-dominated
point of the original problem. This is easy to see since every point to the right
of this (with greater x-coordinate) has a lower y-coordinate and every left to this
point has a lower x-coordinate. Thus, we can safely add this point to our set of
non-dominated points and remove all the points which are dominated by this point.

Next, we claim that after removing the points dominated by the maximum y-
coordinate point on the right side, the points on the left side and right side essen-
tially become independent of each other in the sense that no other point in the left
side can be dominated by a point in the right side any more. This is true, since
every point which is remaining on the left side has a y-coordinate higher than any
point on the right side and hence can’t be dominated. This observation leads us to
the fact that solving the sub-problem for the left and right half and then merely
taking their union will suffice, since any non-dominated point found for the right
half cannot be dominated by some point on the left half and any non-dominated
point found on the left side can’t be dominated by any point on the right side.

From the last claim, we can say that any non-dominated found in the left or
right half will also be a non-dominated point of the original sub-problem. Hence,
we can prove the second part of the claim 1.4.1 that we don’t return dominated
point from the function. Now, all what is left is to show that it returns all of the
non-dominated points present in the original problem. This part is also quite easy
to prove (though not totally trivial). We will prove this by using the tool of proof by
contradiction. Assume on contradiction that there exists a non-dominating point
(say P) but is not returned by our algorithm. The only way this is possible is when
we don’t reach a part containing P. But since the divide and conquer paradigm is
proved to explore the complete domain containing the points, therefore the only
way it leaves out some point unexplored is if that point was already removed
while removing the dominated points of a non-dominated point. Since, we have
already showed above that the points removed in every iteration are the ones dom-
inated by a non-dominated point of the original problem, therefore P is dominated
by some other point and hence not a non-dominating point. Therefore, we reach
a contradiction and hence our algorithm will return all of the non-dominated points.

Talking about the correctness of the base case, which is trivially true. In the
case of just one point remaining, we just return that point as that is non-dominated
by definition. Hence, we showed that our algorithm returns all the non-dominated
points and no more. O

Now we will prove another small claim, which is not important for correctness
but important for future analysis.

Claim 1.4.2. In every recursive call inside Algorithm1 we return at least one non-
dominated point from the original problem.

Proof. This is fairly straightforward to see, since inside each recursive procedure
we are inserting at least one point in the set of non-dominated points (point with
maximum y-coordinate on the right side) which is also a non-dominated point of
the original problem as shown in 1.4.1. The only case when we don’t do this is
when there is no point to the right side of the median line which is only possible
if the size of set of points is 1, which is readily handled by the base case. Hence,
proved. O

1.5 Time complexity analysis

* Let |S|=n and let the number of non-dominated points in S = A.

¢ Lines 2-8 take 0(n) time because x median can be found in &(n) time, rest is
initialization.
* Lines 9-16 take &(n) time because every point in S is encountered exactly

once in the loop.

e S; and Sg are subsets of S and we are iterating over the elements is them.
So lines 17-22 take O(n) time.

¢ Lines 24 and 25 are recursive calls. Since, S is divided based on x median,
we have |S7| < % and |Sg| < %

Line 26 takes &(h) time since it is the union of all non-dominated points.

Summing up over the above mentioned time complexities, any call to the
function FindPoints(S) has &(|S|) cost associated with it other than the
recursive calls to Sy, and Sg.

Consider the recursion tree for the function FindPoints. There will be
O'(h) nodes in this tree because each recursive call returns a distinct non-
dominated point (called p in the function). The point is distinct because in
the further recursive calls, it is removed from Sp.

A node at level i (from the top) in the binary tree represents a function call
for a set of size at most % (since the recursive calls to S7, and Si are obey
the inequalities |S| < % and |Sg| < %).

The total time taken by the function is the sum of costs associated with all
the nodes of the tree. The total number of nodes in constant (0(h)) and cost
associated with a node decreases as we increase its level from the top.

Claim 1.5.1. There is a worst case with respect to time complexity where in
the recursion tree, every level, except possibly the last, is completely filled.

Proof. We prove this by contradiction. Assume that in all worst cases, more
than one level is not completely filled. Consider any worst case. By our as-
sumption, it has at least two levels which are not completely filled. Therefore,
there is node (let us call it N) at level i which does not have a child (without
loss of generality, assume left) and there is another node (let us call it M) at
level i + 1 which is not a leaf node. Without loss of generality, assume that
the left child (let us call it M7,) of M is present.

Consider another tree in which N has left child as the subtree rooted at
Mj,, M has no left child and other relations between nodes remain same as
before. The new tree has a time cost that is greater than or equal to the origi-
nal tree’s cost because each node in subtree rooted at M, moved up by 1 level
(thus doubling their associated cost), while for the rest of the nodes, the asso-
ciated cost remains same. We can continue this till the tree becomes complete.

Thus, assuming that the tree was not complete, we created another tree
which has higher time cost. O

Height of this complete binary tree will be G(logy &) since there are & nodes.
Cost at each level of the tree is @’(2’.%) = 0(n) since there are 2' nodes at
level i each of which has a cost ﬁ(%).

Total cost is G(nlogy k) (levels = G(logy h), cost at each level = G(n)).

