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I Problem 1 (Difficult) Solution
In this problem, we were asked to compute minimum cost paths dynamically over
a changing network of nodes and had to optimise a particular type of cost metric.
We solved this problem using the technique of Dynamic Programming and the
solution will be explained below with proof of correctness. Let us define the problem
formally first that we will be tackling.

Problem Statement: We are given a set of nodes V , and a set of edges which
change dynamically over different timestamps. At timestamp i, we have the set of
edges as E i. Let us denote the graph at time i ∈ {0,1 . . .b} by G i = (V ,E i). Another
assumption is that all the G is are connected. The problem is to look at two particu-
lar nodes s and t and define a path connecting them in graph G i as Pi. Given a
constant K , we are asked to find a sequence of paths P0,P1, . . .Pb that minimises

cost(P0,P1, . . .Pb)=
b∑

i=0
l(Pi)+K · changes(P0,P1 . . .Pb)

Let us define some notations first that we will be using throughout the rest of the
solution.

1.1 Notations and definitions
• DP[i][ j] : For 0 ≤ i, j ≤ b this represents the minimum cost of sequence of

paths P0,P1 . . .Pi with changes(P0,P1 . . .Pi)≤ j where Pl is a path from s to
t in G l for 0 ≤ l ≤ i. It is also possible that no such sequence of path exists
where at most j changes can be done, in which case DP[i][ j]=∞.

• E i j: For 0≤ i ≤ j ≤ b it is defined as E i j = ⋂
i≤l≤ j

E l .

• Ci j : For 0 ≤ i ≤ j ≤ b, Minimum cost to reach from s to t in the graph
G = (V ,E i j). It is also possible that t might not be reachable from s with edge
set defined as E i j, in which case Ci j =∞. Note that it is equivalent to the
minimum cost of a sequence of paths (Pi,Pi+1, . . . ,P j) such that Pk is a path
from s to t in the graph Gk and changes(Pi,Pi+1, . . . ,P j)= 0.

• For 0≤ i, j ≤ b, (P i j
0 ,P i j

1 , . . .P i j
i ) is a tuple that represents an optimal sequence

of paths with at most j changes, where P i j
l is a path from s to t in G l for

0≤ l ≤ i, for which the cost is DP[i][ j].

• For 0 ≤ i ≤ j ≤ b, (C i j
i ,C i j

i+1, . . .C i j
j ) is a tuple that represents an optimal

sequence of paths (for the problem of minimising cost(Pi,Pi+1 . . . ,P j) with
changes(Pi,Pi+1 . . .P j)= 0) for which the cost is Ci j.

• S i j : For 0≤ i, j ≤ b, it denotes the set of all sequence of paths (P0,P1, . . .Pi)
such that changes(P0,P1 . . .Pi)≤ j.

1.2 Recursive formulation
We notice that the given problem has an optimal substructure which we can exploit
to devise a recursive relation which can solve the problem in polynomial time
complexity. For this let us prove the recursive relation as a claim below. We will be
using the same set of notation which has been defined in the section 1.1.
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Claim 1.2.1. DP[i][ j]= min(C0i, minl (DP[l][ j−1] + K + C(l+1)i)) where 0≤ l < i

Proof. We prove this in two parts.

• DP[i][ j]≤ min(C0i, minl (DP[l][ j−1] + K + C(l+1)i)) where 0≤ l < i

For proving this part, we will show that DP[i][ j] ≤ C0i and DP[i][ j] ≤
minl (DP[l][ j−1] + K + C(l+1)i) where 0≤ l < i. Let us first prove each of
the two terms.

1. DP[i][ j]≤ C0i
Proof: Notice that DP[i][ j] defines the optimal cost of set of paths from
s to t in the prefix i of set of graphs with at most j changes. Also recall
that C0i defines the minimum cost to reach from s to t with no changes
in the path. Therefore we can see that problem of finding C0i (if exists)
is a sub-problem of the problem addressed by DP[i][ j]. We need not
worry about the case when C0i does not exist (because in that case
it is defined to be ∞). Since, C0i represents the cost of a sequence of
paths which lies in set S i j and DP[i][ j] is the minimum cost for all path
sequences in S i j,

DP[i][ j]≤ C0i (I1)

2. DP[i][ j]≤ minl (DP[l][ j−1] + K + C(l+1)i) where 0≤ l < i
Proof: As told before, DP[i][ j] defines the optimal cost of set of paths
from s to t in the prefix i of set of graphs with at most j changes. For
understanding the right hand side, there might be two cases arising, for
any l ∈ {0, . . . i−1} either the end of any sequence of paths corresponding
to DP[l][ j−1] and any path corresponding to C(l+1)i will be same or
they will be different. Note that if DP[l][ j−1] or C(l+1)i is not defined
(∞), for some l, the inequality is trivially true for that l. So, we will not
worry about these cases further in our study.

Consider for any l ∈ {0, . . . i−1} the concatenation of the paths (P l( j−1)
0 ,

P l( j−1)
1 , . . .P l( j−1)

l ) and the path (C(l+1)i
l+1 ,C(l+1)i

l+2 , . . .C(l+1)i
i ) (say P). Note

that these sequence of paths may not be unique, but the proof ahead
does not rely on any specific path sequence so we can consider any opti-
mal sequence of paths without loss of generality. In the concatenated
sequence, there will be atmost j changes (atmost j−1 changes till l and
atmost 1 change between l and l+1). So, this concatenated sequence of
path is an element of S i j.

In case the paths P l( j−1)
l and C(l+1)i

l+1 are different, this leads DP[l][ j−
1] + K + C(l+1) j to be the cost of a solution of problem of at most j
changes in the prefix i, since DP[l][ j −1] corresponds to the cost of
solution of at most j−1 changes in prefix l, adding K reflects the cost
due to one change and adding C(l+1)i term reflects the minimum cost of
choosing the same path in the suffix from l+1 to i. Since DP[i][ j] is the
minimum cost for the sequence of paths in the set S i j while P is just
an element of S i j, we get that DP[i][ j]≤ DP[l][ j−1] + K + C(l+1)i for
each such l.

Now, for the other case consider any l ∈ {0, . . . i−1}, in case the two paths
(the end of sequence of paths corresponding to DP[l][ j−1] (P l( j−1)l ) and
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any path corresponding to C(l+1)i) are same. Consider concatenating the
paths from the solution of DP[l][ j−1] and the path from C(l+1)i (call it P).
Since, the paths P l( j−1)

l and C(l+1)i
l+1 ) are same, hence on concatenating

the two sets of paths, change(P) = change(P l( j−1)
0 ,P l( j−1)

1 , . . .P l( j−1)
l ) ≤

j−1. Hence P will have at most j−1 changes (which arise due to the
solution from DP[l][ j−1]). Therefore, it becomes easy to notice that this
sequence of paths obtained is an element of the set Si j. Since DP[i][ j]
is the minimum cost for the sequence of paths in the set S i j while P
is just an element of S i j, we get that DP[i][ j] ≤ DP[l][ j−1] + C(l+1)i
for any such l. Now, since K > 0 therefore we get that DP[i][ j] ≤
DP[l][ j−1] + C(l+1)i < DP[l][ j−1] + K + C(l+1)i.

Therefore we get that ∀l ∈ {0, . . . i−1}, DP[i][ j] ≤ (DP[l][ j−1] + K +
C(l+1)i) and therefore

DP[i][j] ≤ minl (DP[l][ j−1] + K + C(l+1)i) where 0≤ l < i (I2)

Now, combining the two results obtained in (I1) and (I2) above, we get that

DP[i][ j]≤ min(C0i, minl (DP[l][ j−1] + K + C(l+1)i)) where 0≤ l < i
(I3)

• DP[i][ j]≥ min(C0i, minl (DP[l][ j−1] + K + C(l+1)i)) where 0≤ l < i

Consider any optimal solution (P i j
0 ,P i j

1 , . . .P i j
i ) for DP[i][ j] (if exists). If there

is no solution for DP[i][ j], the inequality is trivially true. There are two
cases to consider:

1. changes(P i j
0 ,P i j

1 . . .P i j
i ) = 0 : Here, P i j

0 = P i j
1 = . . .P i j

i . In this case,
DP[i][ j]= (i+1)length(P i j

0 ) (by definition of cost of sequence of paths).
Also, all the edges in P i j

0 must be present in E0i because the same path
is present in E0,E1, . . .E i. Thus, by definition of C0i,

C0i ≤ (i+1)length(P i j
0 )= DP[i][ j] (I4)

because C0i considers the shortest path in E0i and P i j
0 is one of the

paths in E0i.

2. changes(P i j
0 ,P i j

1 . . .P i j
i ) ≥ 1 : There exists l′ < i such that P i j

l′ 6= P i j
l′+1

and P i j
l′+1 = P i j

l′+2, · · · = P i j
i . Informally, we are considering the first point

where path is different if we start from P i j
i to P i j

0 . Since one change is
exhausted at the place l′ and changes(P i j

0 ,P i j
1 . . .P i j

i )≤ j by definition
of DP[i][ j], we have that changes(P i j

0 ,P i j
1 . . .P i j

l′ ) ≤ j −1. Now since
DP[l′][ j−1] considers all sequence of paths P0,P1, . . .Pl′ where at most
j−1 changes take place,

cost(P i j
0 ,P i j

1 . . .P i j
l′ )≥ DP[l′][ j−1] (I5)

Also,

DP[i][ j]= cost(P i j
0 ,P i j

1 . . .P i j
l′ )+K + cost(P i j

l′+1,P i j
l′+2, . . .P i j

i ) (I6)

Substituting equation 6 in 5,

DP[i][ j]−K − cost(P i j
l′+1,P i j

l′+2, . . .P i j
i )≥ DP[l′][ j−1] (I7)
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Since P i j
l′+1 = P i j

l′+2, · · · = P i j
i , C(l′+1)i is finite, Also, all of P i j

i must have
all of its edges in E(l′+1)i and since P i j

i just one of the paths in E(l′+1)i,

C(l′+1)i ≤ (i− l′)length(P i j
i )= cost(P i j

l′+1,P i j
l′+2, . . .P i j

i ) (I8)

Substituting equation 8 in 7,

DP[i][ j]−K −C(l′+1)i ≥ DP[l′][ j−1] (I9)

which implies DP[i][ j]≥ K +C(l′+1)i +DP[l′][ j−1]. So we have proved
that in this case, there exists l′ such that DP[i][ j] ≥ K + C(l′+1)i +
DP[l′][ j−1]. Since we take minimum over all l′, the inequality DP[i][ j]≥
minl (DP[l][ j−1] + K + C(l+1)i) where 0≤ l < i will hold.

Case 1 =⇒ DP[i][ j]≥ C0i
Case 2 =⇒ DP[i][ j]≥ minl (DP[l][ j−1] + K + C(l+1)i) where 0≤ l < i

Since we are taking minimum of minl (DP[l][ j−1] + K + C(l+1)i) and C0i,
we have

DP[i][j] ≥ minl (DP[l][ j−1] + K + C(l+1)i) where 0≤ l < i (I10)

Hence, combining equations 3 and 10, we get

DP[i][j] = min( C0i, minl (DP[l][ j−1] + K + C(l+1)i)) where 0≤ l < i (I11)

Hence proved. This proof also provides an insight on how the algorithm can be
designed.

1.3 Overview
The algorithm computes DP[i][ j] for all 0≤ i, j ≤ b and it also stores which term in
the expression min(C0i, minl (DP[l][ j−1] + K + C(l+1)i)) where 0≤ l < i corre-
sponded to minimum which can be used to reconstruct the sequence of paths.

Using the definition of Ci j as defined above to be the minimum cost to reach
from s to t in the graph G = (V ,E i j). For a single graph, the cost of a path is
defined to be same as it’s length. Therefore, we can equivalently turn the graph
G into a weighted edge graph G′ = (V ,E i j), with each edge having weight 1. So,
this problem of finding Ci j can be thought of as finding the shortest distance path
between s and t in the graph G′. Since the weights of the edges are non-negative,
therefore we can just find the minimum cost using Dijkstra’s algorithm.

Note: In the pseudo code provided below, we have used the procedure Dijkstra,
which we have not provided the implementation for. We have used it as a blackbox
which will run Dijkstra algorithm starting from a source node s and returns the
minimum cost as well as minimum cost path to t as a solution.
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1.4 Pseudo code for sequence of paths with minimum cost

Algorithm 1: Algorithm to find sequence of paths with minimum cost
Input: Set of vertices V , sequence of edge sets E0,E1 . . .Eb, vertices s, t

and K
Output: Sequence of paths P0,P1, . . .Pb with minimum cost

1 C ← 2-D array to store the costs Ci j defined in section 1.2
2 M ← 2-D array of paths to store any minimum path corresponding to Ci j
3 Parent ← 2-D array to store the index of first point of change from the last

path in the sequence of paths corresponding to DP[i][ j]

4 Function FindC(V ,E0,E1, . . .Eb, s, t):
5 for i in 0 to b do
6 E ← E i
7 for j in i to b do
8 E ← E∩E j
9 (Ci j, Mi j)← Di jkstra(V ,E, s, t)

10 return C, M

11 Function ComputeDP(V ,E0,E1, . . .Eb, s, t):
12 C, M ← FindC(V ,E0,E1, . . .Eb, s, t)
13 for i in 0 to b do
14 DP[i][0]← C0i
15 Parent[i][0]←−1

16 for j in 1 to b do
17 for i in 0 to b do
18 DP[i][ j]← C0i
19 Parent[i][ j]←−1
20 for l in 0 to i−1 do
21 if DP[i][ j]> (DP[l][ j−1] + K + C(l+1)i) then
22 DP[i][ j]← (DP[l][ j−1] + K + C(l+1)i)
23 Parent[i][ j]← l

24 return DP,Parent, M

25 Function ComputePaths(V ,E0,E1, . . .Eb, s, t):
26 DP,Parent, M ← ComputeDP(V ,E0,E1, . . .Eb, s, t)
27 Paths ← GetRecursivePath(b,b,Parent, M)
28 return Paths

29 Function GetRecursivePath(i,j, Parent, M):
30 l ← Parent[i][ j]
31 P ′ ← [M(l+1)i||M(l+1)i . . . ||M(l+1)i] // Concatenating M(l+1)i i− l times
32 if l ==−1 then
33 return P ′

34 Paths ← GetRecursivePath(l, j−1,Parent, M)||P ′

35 return Paths

36 0
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1.5 Proof of correctness
• Correctness of function FindC: This function computes the value of C

array. As told previously, Ci j stores the minimum cost as defined in Section
1.1. This provided function first computes E i j as defined in the Section
1.1 and then applies Dijkstra on the graph formed by the edge set E i j and
vertex set V . Hence, by definition of Ci j this function returns the correct
value of Ci j and Mi j. We will now prove that applying Dijkstra’s algorithm
on the graph G = (V ,E i j) solves the problem of computing a sequence of
paths (Pi,Pi+1, . . . ,P j) such that Pk is a path from s to t in the graph Gk and
changes(Pi,Pi+1, . . . ,P j)= 0.

Say, there exists another common path from s to t (say P) corresponding to
Ci j with smaller cost than the one found by Dijkstra. Since, P exists in each
of the graphs (G i to G j), hence it will also be present in G = (V ,E i j). But
then, applying Dijkstra on G should have returned the path with cost same
as P, which is a contradiction to the fact that cost of P is smaller than the
one found by Dijkstra. Hence, applying Dijkstra Algorithm works in this case
and hence the correctness of this function.

• Correctness of function FindPaths: Let the sequence of paths returned
by ComputePaths be (P0,P1, . . .Pm). We have that m = b and edges in Pl
are subset of E l for any l and it forms a path from s to t in G l . Assume that in
kth recursive call, i takes value ik and l takes value lk. We have that in kth

call, ik − lk paths are appended to the sequence of paths. Thus total number
of paths = i1− l1+ i2− l2 . . . im − lm where m is the number of recursive calls
in which the algorithm terminates (proof given in time complexity analysis).
Also, from line 30 and 34 in the code, we have ik+1 = lk for any 1 ≤ k < m.
Thus, total number of paths = i1− lm = b+1 (initially i is b and the algorithm
terminates when l is -1). Also, note that in kth call, intersection of edge sets
from E lk to E(lk+1−1) generate Plk to P(lk+1−1) each of which is a path from s to
t. Therefore, we have that Pl contains edges from the graph G l . Let us now
prove the correctness of the rest of the algorithm with help of some claims.

Claim 1.5.1. The sequence given by DP[b][b] is the required sequence

Proof. Consider any path P0,P1, . . .Pb. changes(P0,P1, . . .Pb)≤ b ( = b, if we
change at all indices). Thus, the optimal path sequence corresponding to
DP[b][b], will be the best among all the possible path sequences of length
b.

Claim 1.5.2. The cost of the sequence of paths returned by the function
GetRecusivePath(i, j,Parent, M) is DP[i][ j].

Proof. We will prove this using induction on i (number of edge sets).
Base case (i = 0): In this case, the value of parent will be −1 for all j ∈
{0,1, . . .b}, as can be seen in the ComputeDP function. Hence, the algorithm
will trivially return the shortest path present in the graph G0. Hence the
algorithm works for the case of i = 0∀ j ∈ {0,1, . . .b} (because 0 changes will be
there when i = 0).
Induction step: Assume that the function correctly returns the answer for
all i ≤ k and ∀ j ∈ {0,1, . . . ,b} and we will prove that it also returns correct
sequence of paths for i = k + 1 and any j. For the case when j = 0, the
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value of l becomes −1 and hence the function correctly returns the path M0i
concatenated i+1 times. For the other cases when j ≥ 1, when calling the
function GetRecursivePath with i = k+1, it can either happen that value
of l inside the function becomes −1 or something else. If l ==−1, this means
that inside the ComputeDP function parent[k+1][ j] will not get updated
in lines 20-23 and hence DP[k+1][ j] will also store the value C0(k+1), which
is correctly returned by the algorithm using the procedure f indC. In the
other case, when l 6= −1, l will be less than k+1 and we are returning the
optimal solution of DP[l][ j−1] concatenated with P ′. Note that by induction
hypothesis, the path returned by recursive call with i = l and j = j−1 returns
an optimal sequence of paths with cost DP[l][ j−1]. We now need to prove
that this sequence of path concatenated with P ′ has cost of DP[k+1][ j].
There may be two cases arising, one that the final path returned from the
recursive call (say, {P0,P1, . . . ,Pl}) and the sequence of paths P ′ (variable as
defined in pseudo code) (say {P ′

0, . . .P ′
i−l−1}) have the same paths Pl and P ′

0
or different paths Pl and P ′

0. Also by our DP formulation, we have that

DP[i][ j]= DP[l][ j−1]+K +C(l+1)i where l = Parent[i][ j]

In the case of different paths, we are done since the cost of the returned path
is same as DP[l][ j−1]+K +C(l+1)(k+1), which is indeed DP[k+1][ j] (using
our DP formulation). Now, we will prove that the other case is not possible,
i.e. they cannot have same paths Pl and P ′

0. Assume that this happened
to be the case, then the path returned by the function will be a valid path
(as proved above using induction hypothesis) in S(k+1) j and have the cost of
DP[l][ j−1]+C(l+1)(k+1) which is strictly less than DP[l][ j−1]+K+C(l+1)(k+1) =
DP[k+1][ j], which cannot be true, since DP[k+1][ j] is the optimal cost of
any sequence of paths in S(k+1) j. We have not made any assumption on j, it
holds ∀ j. Hence proved the induction step.

Using the above claim, function GetRecursivePath when called with i = b
and j = b, will return the optimal path with cost DP[b][b] and hence by claim
1.5.1, the returned path will be the required path.
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1.6 Time complexity analysis
• Lines 5,7 have one loop each, iterating over O (b) values.

• Line 8 can compute intersection of edge sets in O (n4) (checking for each edge
in first edge set and iterating over all edges in second to see if it lies there
too).

• Dijkstra can be done in O (m+n logn) where m is the number of edges in the
edge set.

• Thus, computing C, M takes O (b2n4) time.

• Line 12 is a call to the function FindC which takes O (b2n4) time.

• Lines 13-15 take O (b) time.

• Lines 16-23 take O (b3) time because of 3 nested loops each of which iterate
over O (b) values.

• Thus, ComputeDP and FindC together take O (b2n4 +b3) time.

• Note that Parent[i][ j] < i because it is either -1 or in line 20, l is iterated
from 0 to i−1. Thus, in each call of GetRecursivePath, |P ′| = i− l which is
non-empty. Thus, in the recursion tree, i strictly decreases (because value of
i in next iteration is l) and terminates when Parent[i][ j]=−1. Thus, O (b)
recursive calls are there. We can update path sequence in a global array,
copying each element in this array would take O (n) time (because path can
be of length atmos n−1) and since there are O (b) elements, it takes O (nb)
time. Thus, total time taken is for the function GetRecursivePath with
i = b, j = b isz O (nb2)

• All of the above mentioned steps take polynomial time. Complexity of the
algorithm is O (b2n4 +b3).
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