
CS345 : Algorithms II

Semester I, 2021-22, CSE, IIT Kanpur

Assignment 3

Deadline : 11:55 PM, 14th November 2021.

Most Important guidelines

• It is only through the assignments that one learns the most about the algorithms and
data structures. You are advised to refrain from searching for a solution on the net
or from a notebook or from other fellow students. Remember - Before cheating
the instructor, you are cheating yourself. The onus of learning from a course
lies first on you. So act wisely while working on this assignment.

• Grading policy:
There will be no penalty for submission based on the time of submission as long as
the submission is before the deadline.

• Refrain from collaborating with the students of other groups. If any evidence is found
that confirms copying, the penalty will be very harsh. Refer to the website at the link:
https://cse.iitk.ac.in/pages/AntiCheatingPolicy.html regarding the departmental pol-
icy on cheating.

i



General guidelines

1. There is only problem in this assignment. However, hints are given at multiple levels
in the solution of this problem. You may use these hints if required. There is no
penalty for using these hints.

2. You are strongly discouraged to submit the scanned copy of a handwritten solution.
Instead, you should prepare your answer using any text processing software (LaTex,
Microsoft word, ...). The final submission should be a single pdf file.

3. You need to justify any claim that you make during the analysis of the algorithm.
But you must be formal, concise, and precise. You may use the results proved in
the class. But, if you wish to use any homework problem in your solution, you must
provide its solution as well.

4. If you are asked to design an algorithm, you may state the algorithm either in plain
English or a pseudocode. But it must be formal, complete, unambiguous, and easy
to read. You must not submit any code (in C++ or C, python, ...).

5. Naming the file:
The submission file has to be given a name that reflects the information about the
assignment number, and the roll numbers of the 2 students of the group. For example,
you should name the file as Assign i Rollnumber1 Rollnumber2.pdf if you are
submitting the solution for the ith assignment.

6. Each student of a group has to upload the submission file separately.

7. Deadline is strict. Make sure you upload the assignment well in time to avoid last
minute rush.

8. Contact TA at the email address: Kbhanja@cse.iitk.ac.in for all queries related to
the submission of this assignment. Avoid sending any such queries to the instructor.

ii



Ford-Fulkerson algorithm in polynomial time for integer capacity

While covering the topic on Maximum Flow in the class, we showed a graph with integer
capacities on which the Ford-Fulkerson algorithm can be made to run in Θ(mcmax) time,
where cmax is the maximum capacity of any edge in G. This running time is not a poly-
nomial in the input size. The objective of this assignment problem is to slightly modify
the algorithm so that it runs in polynomial time for all integer capacity graphs. In fact,
the intuition underlying the modified algorithm is based on the graph that we discussed
in Lecture 23.

Spend sufficient time to ponder over the slight modification in the Ford-Fulkerson
algorithm. Thereafter, turn over the page.

iii



The modification required in the Ford-Fulkerson algorithm is just the following.

In each iteration, pick the path with maximum capacity in the residual network Gf and
use it to increase the flow in G during that iteration.

Spend sufficient time to show that the Ford-Fulkerson algorithm after this modification
will use only O(m log2 cmax) augmenting paths to compute the maximum flow from s to
t. Hence, its time complexity is polynomial in the input size. If you don’t succeed, turn
over the page.

iv



Consider the following algorithm.

Algorithm 1: Poly-FF(G, s, t)

f ← 0;
k ← maximum capacity of any edge in G;
while k ≥ . . . do

while there exists a path of capacity ≥ . . . in Gf do
Let P be any path in Gf with capacity at least . . .;
for each edge (x, y) ∈ Gf do

if (x, y) is a forward edge then f(x, y)← f(x, y) + . . .;
if (x, y) is a backward edge then f(y, x)← f(y, x)− . . .;

k ← . . .;

return f ;

1. Fill in the blanks of algorithm Poly-FF(G, s, t) suitably. This will add to your insight
into the algorithm.

2. Show that, for any graph G, the worst case number of augmenting paths used in the
algorithm described on the previous page is upper bounded by the worst case number
of augmenting paths used in the algorithm Poly-FF(G, s, t). Hence, in order to show
that the algorithm on the previous page uses O(m log2 cmax) augmenting paths, it
suffices to show that the algorithm Poly-FF(G, s, t) uses O(m log2 cmax) augmenting
paths.

3. A useful hint, that you may use, is the following: The outermost While loop should
run for O(log2 cmax) times only. So all that is left for you to show is that the number
of iterations of the inner While loop for any specific value of variable k is O(m) only.
Spend sufficient time to establish this. If you don’t succeed, please turn over the
page.

4. Note that the running time of one iteration of the inner While loop is O(m). So,
if we are able to establish the validity of Step 3, the running time of the algorithm
Poly-FF(G, s, t) is O(m2 log2 cmax).

v



Proceed along the following steps.

1. Consider the beginning of the iteration of the outermost While loop for any value,
say k0, of variable k. Prove the following lemma:

Lemma 0.1 If f is the current value of the (s, t)-flow in G, then show that f ≥
fmax − 2mk0, where fmax is the maximum (s, t)-flow in G.

2. What is the lower bound on the amount by which the flow increases in an iteration
of the inner While loop for a given value k0 of variable k ?

3. Use (1) and (2) to provide suitable arguments to establish that the inner While loop
will run for O(m) times only for any specific value of k.

If you are still now able to complete the above steps, turn over the page.

vi



The following are the hints for the steps mentioned on the previous page.

1. In order to prove Lemma 0.1, carefully analyse the residual network Gf . If you have
fully internalized the maflow-mincut theorem discussed in the lecture, you should
have no difficulty to do this task.

But if you are still now able to complete the above steps, turn over the page.

2. The flow increases by at least k0. Give suitable arguments to support this claim.

3. It follows from (1) that the current flow is away from the maximum flow by at most
2mk0. It follows from (2) that each iteration of the inner loop increases the flow by
at least k. Hence the number of iterations of the inner While loop for any fixed value
of k is O(m) only.

vii



For Step 1 on the previous page:
Notice that there is no (s, t)-path in Gf with capacity ≥ 2k0. Now suitably define a (s, t)-
cut in Gf and then try to give a bound on the capacities of its forward and backward
edges. Use it to derive a lower bound on the current flow in terms of the capacity of
the cut. You might have to use the fact that the maximum (s, t)-flow is bounded by the
capacity of any (s, t)-cut.

viii


