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Question 1

Consider a variant of DES algorithm in which the S-box S1 is changed as follows:

For every six bit input α, the following property holds: S1(α) = S1(α⊕ 001100)⊕
1111.

All other S-boxes and operations remain the same. Design an algorithm to break four
rounds of this variant. In order to get any credit, your algorithm must make use of the
changed behavior of S1.

Solution

Consider input XOR to S1 as 001100 and the input pair as (β1, β2),

S1(β1) = S1(β1 ⊕ 001100)⊕ 1111 (1.1)

S1(β1) = S1(β2)⊕ 1111 (1.2)

S1(β1)⊕ S1(β2) = 1111 (1.3)

The output XOR is thus 1111 with probability 1.

We would use Differential Cryptanalysis using 2 round characteristic to break the DES.
Following the same procedure as discussed in lecture 6 slide 15, The 2-round character-
istic is calculated as, (60000̄, 0̄0̄, 1, 0̄0̄, 60000̄, 1, 60000̄, 00808202), as input to S1 for round
two would be ’001100’ (discussed in the same lecture) and Permutation (’1111’+’0’*28)
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can be calculated as 00808202.

The probability of the characteristic is thus 1, implying L3R3 = R2L4 is a fixed constant
for each plaintext block pair L0R0, L′0R′0. This further implies that k4,i must necessarily be
present in Ki for 1 <= i <= 8, because Ki represents the set of all possible keys and the
values of γ and αi are fixed constants due to them being dependent only on L3⊕ L′3 and R3

respectively, which are fixed known constants for a given plaintext block pair L0R0, L′0R′0.
(here Ki is defined in the same manner as given lecture 7 slide 4)
For a set of l plaintext pairs, the value that is present in every Kij 1 <= j <= l is k4,i as
probability = 1. For every other key k in Ki, there exists a set of keys K′i corresponding to
another plaintext pair in which k is not present.

We can now formulate the above idea in an algorithm as follows
Given : The two round characteristic is: (60000̄, 0̄0̄, 1, 0̄0̄, 60000̄, 1, 60000̄, 00808202),

L0R0, L4R4, L′0R′0, L′4R′4, E(), S(), R3 = L4, R′3 = L′4.
Want : k4

1. Calculate αi, α′i, βi ⊕ β′i, γi ⊕ γ′i as given in lecture 7 page 3
2. Calculate Xi, Ki as defined in Lecture 7 page 4
3. After performing steps 1 and 2 on the first plaintext block, continue to perform
1, 2 for l pairs of plaintext blocks L0R0, L′0R′0 as below

4. for i = 1 till i = 8 do
P = Ki0

j = 0 //j denotes the number of plaintext pairs currently generated
While n(P) > 1 { // n(P) denotes cardinality of P

Steps 1 and 2 with a new plaintext block pair
P = P ∩ Ki j //Ki j denotes the set Ki for jth pair
j+=1

}
k4,i = P

end
5. k4 = k4,1 . . . k4,8

6. End
Algorithm 1: Find Key

The attack discussed above is pretty efficient in the sense that we only require a handful of
plaintexts pairs in order to derive key for the last round, as the loop terminates as soon as
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the cardinality of P becomes 1. According to the analysis done in class, we would require
around l = 20/p plaintext pairs, since p = 1 here, taking around 20 pairs would identify
key uniquely for most cases. Also, once we obtain the key for round 4, we will end up
with 48 out of 56 bits of the master key. We can either run brute force attack on the rest
of the 8 bits or if keys are independent we can convert the DES to 3 round DES, and after
getting k3 using a similar approach as discussed above, convert this DES to 2-round DES,
which can be solved easily as discussed in lecture 5. We thus get the keys to all 4 rounds,
which breaks the DES completely.
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Question 2

The SUBSET-SUM problem is defined as follows:

Given (a1, . . . , an) ∈ Zn and m ∈ Z, find (b1, . . . , bn) ∈ {0, 1}n such that

∑n
i=1 aibi = m if it exists.

This problem is believed to be a hard-to-solve problem in general. Consider a hypo-
thetical scenario where Anubha and Braj have access to a fast method of solving SUBSET-
SUM problem. They use the following method to exchange a secret key of AES:

Anubha generates an n = 128 bit secret key k. She then chooses n positive
integers a1, . . . , an such that ai > ∑1≤j<i aj. She computes m = ∑n

i=1 aiki and
sends (a1, a2, . . . , an, m) to Braj, where ki is ith bit of k. Upon receiving numbers
(a1, a2, . . . , an, m), Braj solves the SUBSET-SUM problem to extract the key k.

Show that an attacker Ela does not need to solve SUBSET-SUM problem to retrieve the
key k from (a1, a2, . . . , an, m).

Solution

We want to find an n-bit key k. We will provide a method that will find the right key only
for the case when m is actually a possible subset-sum.

Theorem 2.1. kn = 1 iff m > ∑i=n−1
i=1 ai.

Proof. ⇒ Suppose kn = 1.
Then, m = ∑i=n−1

i=1 aiki + ankn.
Now, since all ais are positive numbers, therefore m ≥ ankn = an. But an > ∑i=n−1

i=1 ai.
This implies that : m > ∑i=n−1

i=1 ai

Proof. ⇐We will do proof by Contradiction.
Suppose m > ∑i=n−1

i=1 ai but kn = 0.
We know that m = ∑i=n

i=1 aiki = ∑i=n−1
i=1 aiki. [Because kn = 0] .

Now, the maximum value of m we can now get is mmax = ∑i=n−1
i=1 ai. [By setting ki = 1∀i]

But, we know that m > mmax from our hypothesis, which provides a fallacy hence we
derive a contradiction as a result, which implies that our assumption was wrong.
This implies kn = 1.
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Let’s make an important observation. This result is valid only for figuring out the last
bit of k, but we can easily find all the bits using recursion on (a1, a2, ...an−1, m− knan). We
can now extend this result into an algorithmic solution.

Given : m, n, a1, a2, ..., an.
Want : k
for i = n down to 2 do

ki = 0
if m > ∑

j=i−1
j=1 aj then

ki = 1
end
m = m− kiai

end
if m == a1 then

k1 = 1
end
else

k1 = 0
end

Algorithm 2: Find Key
Proof of Correctness
We prove the correctness by induction on n.
Base Case: if n == 1, we will have only a1 to compare to. Hence, trivially the algorithm
outputs correct 1 bit key for this case.
Proposition : Suppose the algorithm correctly finds a key k of length n− 1.
The loop starts by finding the nth bit of k. [Theorem 2.1].
Now m is updated to give m′ = m− knan. We can make this update since we know that
solution exists for m and hence a solution will exist for m− knan as well.
This m′ is the same SUBSET SUM problem for a key of length n− 1. And by the assump-
tion, the algorithm will find the key.
Hence, the algorithm finds a key of length n correctly.
Hence, Proved.

As we can see, we get an O(n) algorithm (summations of ai can be stored in a pre com-
puted array) to find the key k. We don’t need to solve a hard problem :)
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Question 3

Having falied to arrive at a secret key as above, Anubha and Braj try another method. Let
G be the group of n× n invertible matrices over field F, n = 128. Let a, b, g ∈ G such that
ab 6= ba. The group G and the elements a, b, g are publicly known. Anubha and Braj wish
to create a shared secret key as follows:

Anubha chooses integers `, m randomly with 1 < `, m ≤ 2n, and sends u =

a`gbm to Braj. Braj chooses integers r, s randomly with 1 < r, s ≤ 2n, and
sends v = argbs to Anubha. Anubha computes ka = a`vbm = a`+rgbm+s. Braj
computes kb = arubs = a`+rgbm+s. The secret key is thus k = ka = kb.

Show that even this attempt fails as Ela can find k using u and v.

Hint: Show that Ela can

1. find elements x and y such that xa = ax, yb = by, and u = xgy,

2. use x, y, and v to compute k.

Solution

In the solution ahead, we will be using a, b and g as described in the problem to be avail-
able publicly. All other variables like u and v also remain same. Let us denote the random
integers chosen by Anubha as ` and m and Braj’s as r and s for generation of private key.

Claim 3.1. There exists non-trivial elements x, y in G such that xa = ax, yb = by and
u = xgy or the system of equations has atleast one non-trivial solution.

Proof. This claim can be easily proven, seeing the fact that x = a` and y = am provides a
solution to the system of equations. Therefore, the above system of equations is consis-
tent.

Claim 3.2. If pq = qp for some p, q ∈ G, then pqα = qα p for all α ≥ 1.

Proof. We will prove this claim using induction on α. For base case, we take α = 1 which
lead to our hypothesis pq = qp only. Hence, base condition is satisfied. Now, we assume
that it is true for some i > 1 and we will prove that it holds for i + 1 as well.

pqi = qi p
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pqiq = qi pq

pqi+1 = qiqp

pqi+1 = qi+1p

Hence, proved using induction that the claim is true for all α ≥ 1

Claim 3.3. If we have a solution for the the set of equations xa = ax, yb = by and u = xgy
then we can obtain the private key k as just xvy.

Proof. We notice that v = argbs. Now, plugging in this value, we get xvy = xargbsy. Now,
using claim 3.2, this rearranges to xvy = arxgybs. Now, substituting u, we get xvy = arubs

which is equal to kb which is in turn equal to k. Hence proved.

Now, the only task is to find the values of such x and y efficiently. We notice that out of the
three equations, only the last one is non-linear in nature. We use the fact that x belongs to
the group of invertible matrices and hence, the third equation transforms to x−1u = gy.
But now the variables have changed and we have introduced a new variable x−1, there-
fore we will rearrange the first equation as well to it’s equivalent form by pre-multiplying
and post-multiplying with x−1 to x−1a = ax−1. Let x−1 = x′, which transforms the three
equations as

x′a = ax′

yb = by

x′u = gy

The third equation gives us x′ = gyu−1. Substituting this in first equation leaves gyu−1a =

agyu−1. Now, we are left with two linear equations and just one unknown which is y. The
existence of a solution can be easily seen using claim 3.1. We have 2n2 linear equations
for n2 variables in matrix y and we can make an augmented matrix of size 2n2× (n2 + 1).
Hence, existence of a non-trivial solution guarantees the presence of at least one free vari-
able in the reduced echelon form of the matrix for solving the system of equations. Con-
sidering the fact that we have an overwhelming excess of equations over the variables,
the number of free variables will also not be much probabilistically. An intuititve way
of seeing the previous fact, relies on noticing that since we have to make final rank of
echelon matrix to be less than n2, therefore we would have to eliminate more than n2

rows atleast and therefore we will generate more pivots while doing so since we would
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have to use large number of row operations and therefore since pivots would be more,
the number of free variables would be less in general. Hence, we can go over values of
these free variables to generate an invertible matrix y. Also, notice the fact that checking
for invertibility of a matrix can be easily done by converting it to echelon form which
takes roughly cubic operations using Gauss-Jordan Elimination. This analysis allows us
to break the enryption scheme completely.
Complexity of operations: Considering the fact that the probability of finding singular
matrices of order n× n in Rn2

is negligible for large n [1] which can be extended to any
field, we can be sure to find an invertible matrix solution to the above system in finitely
many attempts. Also, the matrix multiplication can be completed in cubic time complex-
ity and Gauss-Jordan elimination also takes cubic time, which are pretty much within
modern computational limits.
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