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CS711: Mid Sem Home Assignment

1.1 Question 1

FALSE

Let the best utility of player i be Bi and let the dominant strategy for player i be s∗i . It can be seen that
there will exist some s−i such that ui(s

∗
i , s−i) = Bi (Bi will definitely be corresponding to some strategy

profile where player i plays s∗i otherwise it wouldn’t have been the dominant strategy for player i). But this
doesn’t necessarily mean that s−i constitutes the PSNE for all the other players except player i.

A simple example is that of Neighbouring Kingdom’s Dilemma (as given in Question 2). Defense is the
dominant strategy for both player 1 and player 2. Therefore (D,D) is the SDSE and consequently the
PSNE. The best utility in the game for player 1 is 6 but in the equilibrium he/she gets only 1 as the utility.

1.2 Question 2

The resulting game will have the following utilities’ table-

A D
A (5 + 5α, 5 + 5α) (6α, 6)
D (6, 6α) (1 + α, 1 + α)

a. For α = 1, the utilities of each action profile will be given by the following table-

A D
A 10,10 6,6
D 6,6 2,2

Clearly, A is the dominating strategy for both the players and hence, the reasonable outcome of the game
is given by strategy profile (A,A). In contrast,in a classical Neighboring Kingdoms’ Dilemma game, D is
the dominating strategy for both the player and the reasonable outcome is given by the strategy profile
(D,D).
Hence, this game is no longer a classical Neighboring Kingdoms’ Dilemma.

b. For the resulting game to be the classical Neighboring Kingdoms’ Dilemma, the strategy D must be
dominating for both the players. This condition gives us the following inequalities-

α+ 1 ≥ 6α

6 ≥ 5 + 5α
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By solving the inequalities, we have: for the resulting game to be the classical Neighbouring Kingdoms’
Dilemma, α ≤ 1/5.
For values of α for which the game is not the Neighboring Kingdoms’ Dilemma i.e. α > 1/5,

• (D,D) cannot be the PSNE, as u2(D,A) > u2(D,D) for α > 1/5.

• (A,D) cannot be the PSNE, as for α > 1/5, u1(A,A) = 5 + 5α > 6 = u1(D,A).
Since the game is symmetric for both players, we can give an analous argument to prove that (A,D)
is not a PSNE.

• (A,A) is a PSNE as for α > 1/5, u1(A,A) = 5 + 5α > 6 = u1(D,A) and u2(A,A) = 5 + 5α > 6 =
u2(A,D).

Hence, (A,A) is the only Nash equilibrium, for the values of α for which the game is not the Neighboring
Kingdoms’ Dilemma.

1.3 Question 3

The utility table is given by :

Turn Don’t Turn
Turn (0, 0) (−1, 1)
Don’t Turn (T,−1) (−2,−2)

Let us denote strategies Don’t Turn by DTu and Turn by Tu

a. It is easy to see that (DTu, Tu) is a PSNE if T > 0. This is because we have,

u1(DTu, Tu) = T > 0 = u1(Tu, Tu) (1.1)

u2(DTu, Tu) = −1 > −2 = u2(DTu,DTu) (1.2)

Similarly, It can be shown that (Tu,DTu) is a PSNE too. The other two strategies aren’t a PSNE because
they violate some property of a PSNE.

b. When T < 0, we can see that (Tu,DTu) is a PSNE because we have,

u1(Tu,DTu) = −1 > −2 = u1(DTu,DTu) (1.3)

u2(Tu,DTu) = 1 > 0 = u2(Tu, Tu) (1.4)

The other three strategies aren’t a PSNE because they violate some property of a PSNE.

c. Consider the mixed strategy σ = (σ1, σ2) where σ1 = (p, 1 − p) and σ2 = (q, 1 − q). By the MSNE
characterization theorem, we must have for player one,

u1(DTu, σ2) = u1(Tu, σ2) giving, (1.5)

(1− q)(−1) = qT + (1− q)(−2) (1.6)

1− q = qT (1.7)

q =
1

T + 1
(1.8)
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and for player 2 we have,

u2(DTu, σ1) = u2(Tu, σ1) giving, (1.9)

(1− p)(−1) = p+ (1− p)(−2) (1.10)

1− p = p (1.11)

p =
1

2
(1.12)

The utility in such an MSNE for player 1 is given by

(1− q)(−1) =
−T

1 + T
(1.13)

and for player 2 is given by

(1− p)(−1) =
−1

2
(1.14)

d. with T = 2 we have p = 1
2 and q = 1

1+T giving q = 1
3 . The payoffs for each of the players are −23 and 1

2 .
Hence, player 1 has a more chance of turning. The higher expected payoff occurs for player 2. Player 2’s
Mixed strategy depends on T.

e. We see that if T > 1, Player 2 has a higher probability mass on DTu, but in turn gets a lower payoff
than what player 1 gets −12 . This is counter intuitive in the sense that player 2 doesn’t focus on winning.
This happens because the rules of the MSNE force Player 2 to put more weight on DTu in order to make
have same expected payoff for both strategies of player 1

1.4 Question 4

a. Assume that the mixed strategy of player 1 σ1 = {p, q, 1− p− q} be such that it guarantees him the same
payoff against any pure strategy of Player II i.e.

u1(σ1, L) = u1(σ1, C) = u1(σ1, R)

=⇒ 3p+ 2q + 2(1− p− q) = −3p+ 6q + 5(1− p− q) = 0 + 4q + 6(1− p− q)

=⇒ p = 2/5, q = 3/5, 1− p− q = 0

Hence the required mixed strategy for player 1 is {2/5,3/5,0}.
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b. Assume that the mixed strategy of player 2 σ2 = {p, q, 1− p− q} be such that it guarantees him the same
payoff against any pure strategy of Player I i.e.

u2(T, σ2) = u2(M,σ2) = u2(B, σ2)

But since u2(s) = −u1(s)∀sεS, so we have

u1(T, σ2) = u1(M,σ2) = u1(B, σ2)

=⇒ 3p− 3q + 0(1− p− q) = 2p+ 6q + 4(1− p− q) = 2 + 5q + 6(1− p− q)

=⇒ p = 22/25, q = 2/25, 1− p− q = 1/25

Hence the required mixed strategy for player 2 is {22/25,2/25,1/25}.

c. The MSNE for this game is ((2/5,5/3,0),(22/5,2/25,1/25)). We have already proved in Lectures, that
the notion of Nash equilibrium and the notion of minmax equilibrium is the same. Hence, the strategies
corresponding to the MSNE will also be the respective maxmin and minmax strategies. According to
Minmax Theorem (we skip the proof of minmax theorem as it is essentially a repetition of Theorem 5.11
in the MSZ book), every game will have a value. Hence, by definition, the optimal strategies of the players
will be the maxmin strategies and the minmax strategies. Since the minmax and maxmin strategies are
obtained are the same as the strategies obtained in (4a) and (4b), therefore, the strategies obtained in
4(a) and 4(b) are also the optimal strategies.

d. We have already seen in lectures that the mixed strategy corresponding to MSNE strategies are calculated
by equating the utilities of a player with different pure strategies of the opponent. Hence, trivially, if
each player has an equating strategy, say σ1, σ2, then the strategy profile (σ1, σ2) is a MSNE. Since it
is an MSNE, σ1 and σ2 must also be the maxmin and minmax mixed strategies of the game. As stated
above, according to Minmax Theorem , every game will have a value. Hence, by definition, the optimal
strategies of the players will be the maxmin strategies and the minmax strategies. Therefore, the optimal
strategies will also be (σ1, σ2).

e. The given statement is not a contradiction to part d) because part (d) says that an equalising strategy
exists for both the players. However, if only one of the players has an equalising strategy, the strategy
need not necessarily be optimal. The example which further illustrates the point is given below.

A B C D

P 3 -3 0 1
Q 2 6 4 1
R 2 5 6 1

1.5 Question 5

The following is the game matrix with the payoffs of Army A (as it is a zero sum game, the payoffs of Army
B is the negative of the payoffs of Army A). The actions of Army A are along the rows and for Army B are
along the columns.

1 2 3

1 0 v1 v1
2 v2 0 v2
3 v3 v3 0
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Here, v1 > v2 > v3
Now, let (p∗, q∗) represent a MSNE, where p∗ = (p∗1, p

∗
2, p
∗
3), p∗1+p∗2+p∗3 = 1 and q∗ = (q∗1 , q

∗
2 , q
∗
3), q∗1+q∗2+q∗3 =

1.

We see that if Army A does not attack a target i, that is a strategy i is not in the support of Army 1
(that is p∗i = 0), then Army B does not need to defend the target i, and hence strategy i is not in the
support of Army B also, and thus q∗i = 0. Now, if q∗i = 0, and i < 3, then p∗i+1 = 0, as Army A will achieve
a higher payoff by attacking target i instead of i+ 1.
Thus, if Army A does not attack target i, then it will surely not attack target i+ 1

Thus, the possibilities are that Army A attacks:

• Only target 1: If Army A attacks only target 1, then Army B can defend target 1, and the utility
for Army A will clearly be more if it attacks target 2 or 3, given that Army B defends target 1 (which
dissatisfies the condition for a mixed strategy profile to be a MSNE). Thus, there is no MSNE in
this case.

• Target 1 and 2, but not 3: Both A and B should be indifferent to use strategies 1 or 2 with non
negative probabilities, and should not play strategy 3. Thus let p∗ = (p, 1− p, 0) and q∗ = (q, 1− q, 0).
Then, we have

(1− p)v2 = pv1 (1.15)

∴ p =
v2

v1 + v2
, (1.16)

(1− q)v1 = qv2 (1.17)

∴ q =
v1

v1 + v2
(1.18)

Clearly, p, q are non negative.

Thus p∗ =

(
v2

v1 + v2
,

v1
v1 + v2

, 0

)
, q∗ =

(
v1

v1 + v2
,

v2
v1 + v2

, 0

)
As A does not attack target 3, the utility in attacking target 3 should not be greater than the ex-

pected utility for A in this case, and thus v3 ≤
v1v2
v1 + v2

for (p∗, q∗) to be an MSNE in this case.

• Target 1, 2 and 3: Both A and B should be indifferent to use strategies 1 or 2 or 3 with non negative
probabilities. Then, let p∗ = (p1, p2, p3), q∗ = (q1, q2, q3), we have

p2v2 + p3v3 = p1v1 + p3v3 = p1v1 = p2v2 (1.19)

=⇒ p1v1 = p2v2 = p3v3 (1.20)

∵ p1 + p2 + p3 = 1 (1.21)

∴ p1 =
v2v3
S

, p2 =
v1v3
S

, p3 =
v1v2
S

, (1.22)

q2v1 + q3v1 = q1v2 + q3v2 = q1v3 + q2v3 (1.23)

=⇒ (1− q1)v1 = (1− q2)v2 = (1− q3)v3 (1.24)

∵ q1 + q2 + q3 = 1 =⇒ 1− q1 + 1− q2 + 1− q3 = 2 (1.25)

∴ q1 =
S − 2v2v3

S
, q2 =

S − 2v1v3
S

, q3 =
S − 2v1v2

S
(1.26)

where S = v1v2 + v2v3 + v1v3.
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Thus, p∗ =

(
v2v3
S

,
v1v3
S

,
v1v2
S

)
and q∗ =

(
S − 2v2v3

S
,
S − 2v1v3

S
,
S − 2v1v2

S

)
Thus, p1, p2, p3 are clearly ≥ 0 and we also need to ensure that q1, q2, q3 ≥ 0, and as q3 is the least of

these, q2 ≥ 0 =⇒ S − 2v1v2 ≥ 0 =⇒ v3 ≥
v1v2
v1 + v2

, for (p∗, q∗) to be an MSNE in this case.

1.6 Question 6

1.6.1 Part (a):

We can formulate this situation as a normal form game as follows:

• The set of players consists of two players, say 1 and 2. Therefore N = 1, 2.

• The set of strategy set of each player consists of choosing the amount of effort for each player. Therefore,
the effort of each player is equivalent to the action taken by the player.

• The utility function of each player can be defined in the following way.

ui(x1, x2) =
f(x1, x2)

2
− c(xi) (1.27)

The above three points allow us to formulate the given situation as NFG.

1.6.2 Part (b):

1. f(x1, x2) = 3x1x2 and c(xi) = x2i , i = 1,2
Aim: For player 1, maximise u1(x1, x2) with respect to x1.

max
x1

u1(x1, x2) (1.28)

=⇒ max
x1

3x1x2
2
− x21 (1.29)

The first order conditions of optimality for player 1 is

∂u1(x1, x2)

∂x1
= 0 (1.30)

=⇒ 3x2
2
− 2x1 = 0 (1.31)

A similar analysis for player two yields it’s condition of optimality as

3x1
2
− 2x2 = 0 (1.32)

Solving equations (1.19) and (1.18) simultaneously yields the solution

x1 = 0, x2 = 0 (1.33)

Therefore the above action set is the nash equilibria for the following game.
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2. f(x1, x2) = 4x1x2 and c(xi) = xi, i = 1,2
Aim: For player 1, maximise u1(x1, x2) with respect to x1.

max
x1

u1(x1, x2) (1.34)

=⇒ max
x1

4x1x2
2
− x21 (1.35)

The first order conditions of optimality for player 1 is

∂u1(x1, x2)

∂x1
= 0 (1.36)

=⇒ 2x2 − 1 = 0 (1.37)

A similar analysis for player two yields it’s condition of optimality as

2x1 − 1 = 0 (1.38)

Solving equations (1.19) and (1.18) simultaneously yields the solution

x1 =
1

2
, x2 =

1

2
(1.39)

Therefore the above action set is the nash equilibria for the following game.

1.6.3 Part (c):

If we plug in the nash equilibrium strategy values in each of the above two cases respectively, we get that
utilities for each player in both the cases are equal to 0.

Clearly, choosing an effort set such as x1 = 1 and x2 = 1 pays a positive utility to each of the player
in both of the cases. Therefore, we can say that YES there exists a pair of efforts which yields higher payoffs
than the Nash equilibrium effort.

1.7 Question 7

Given : A two-player, symmetric game which has a PSNE (s1, s2).
To Prove : (s2, s1) is also a PSNE.
Proof : (s1, s2) being a PSNE implies that

u1(s1, s2) ≥ u1(s
′

1, s2) ∀s
′

1 ∈ S1 (1.40)

u2(s1, s2) ≥ u2(s1, s
′

2) ∀s
′

2 ∈ S1 (1.41)

Using the property of symmetry, we get from the first and second equations above,

u2(s2, s1) ≥ u2(s2, s
′

1) ∀s
′

1 ∈ S1 (1.42)

u1(s2, s1) ≥ u1(s
′

2, s1) ∀s
′

2 ∈ S1 (1.43)

The above two equations, imply that (s2, s1) is a PSNE too.
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1.8 Question 8

Given: A normal form game < N, (Ai)i∈N, (ui)i∈N > such that ∃φ : A → R such that for every player
i ∈ N , for all ai, a

′
i ∈ Ai and for all a−i ∈ A−i

ui(ai, a−i)− ui(a′i, a−i) = φ(ai, a−i)− φ(a′i, a−i) (1.44)

To Prove: This game has a pure strategy Nash equilibrium.

Proof: Observe a few special points about the function φ.

• φ assigns a real value for every s ∈ S.

• By assuming any arbitrary value as reference, we can construct a matrix for this function φ as well
where each entry corresponds to the vector of strategies from the original utility matrix.

For example :

A D
A 1,1 10,0
D 0,5 7,2

A D
A 4 3
D 3 0

Here the first matrix represents the game matrix and second matrix represents the corresponding
φ matrix.

Note: This represents just one out of many possible φ matrices.

Claim: The global maximum of φ matrix is a PSNE of the original game.

Proof: To prove this, suppose s∗ corresponds to global maximum of φ matrix. Then, for any i ∈ N ,
we have by definition of global maximum that

φ(s∗, s∗−i)− φ(s, s∗−i) ≥ 0 (1.45)

=⇒ ui(s
∗, s∗−i)− ui(s, s∗−i) ≥ 0 ∀ si ∈ Si and ∀i ∈ N (1.46)

Hence, s∗ is the PSNE of the original game. Hence, the claim is true.

By using the above claim, we proved that there exists atleast one PSNE in the original game.

1.9 Question 9

As $0.20 are removed after every round, we can clearly see that the game has to end after 5 rounds, as no
money (that is $ 0.00) will be left to split up. So, it is clear that the leaf nodes are reached in this round.
So we find the SPNE by performing backward induction from this round. As it is an odd numbered round,
Player 1 makes the offer.
At any round, we represent the offered split of money as ($a, $b), where $a is the money received by Player
1 and $b is the money received by Player 2.

• Round 5: Player 1 makes an offer of $0.00 to Player 2. Now, if Player 2 rejects the offer, then he
would still get $0.00 in the next round (as there will be no more rounds), so there is not benefit in
rejecting the offer. So he accepts it. Player 1 thus keeps $0.20 to himself. The offered split is hence
($0.20, $0.00).
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• Round 4: In this round, Player 2 makes an offer. He knows that in the next round, the best amount
Player 1 can get is $0.20. Thus he makes an offer with the split ($0.20, $0.20), and Player 1 has to
accept because he can’t get better than $0.20 in the next round.

• Round 3: Similar to previous rounds, Player 1 offers the split ($0.40, $0.20), which is accepted by
Player 2, as he can’t get more than $0.20 in the next round, by rejecting this offer.

• Round 2: Player 2 offers the split ($0.40, $0.40), which is accepted by Player 1 (reason same as above
arguments)

• Round 1: Player 1 offers the split ($0.60, $0.40), accepted by Player 2.

These result of backward induction can be represented by the SPNE (p∗, q∗), where p∗ is the strategy of
Player 1 and q∗ is the strategy of player 2, such that:

p∗ = (Offer ($0.60, $0.40), Accept if offered ≥ $0.40, Offer ($0.20, $0.20), Accept if offered ≥ $0.20, Offer
($0.20, $0.00))

q∗ = (Accept if offered ≥ $0.40, Offer ($0.40, $0.40), Accept if offered ≥ $0.20, Offer ($0.20, $0.20), Accept
if offered ≥ $0.00)

1.10 Question 10

(On next page)
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Figure 1.1: Caption
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Figure 1.2: Caption


