
ESO207A : Data Structures and Algorithms
Assignment 2 Solutions

Yatharth Goswami
Roll No. 191178

October 4, 2020

I Problem 1
This problem required us to implement Queue Data Structure using two stacks.

1.1 Part (a)
This part required us to describe our strategy for solving the task.

Given : Two Stacks S1 and S2. Implement a queue Q using these.
Solution : I will solve this question by making sure that the oldest entered element always remains
at the top of Stack S1 and during dequeue operation, I will always pop the element from stack S1
and therefore this type of workflow will allow the oldest inserted element to be popped first, which
is essentially what Queue does (FIFO).
Now, for implementing the above strategy, we will use stack S2. Suppose, the above condition is
true at some state of program and we want to perform the enqueue operation (say we want to
enqueue an element x). So, for that we would perform the following in order:

• Pop each element from stack S1 and push it into stack S2 one after the other while S1 becomes
empty.

• Push the element x to stack S2

• Pop each element from stack S2 and push it into stack S1 while S2 becomes empty.

Notice after the end of the above sequence of moves the oldest element is still at the top and the
newest entered element (x) is at the bottom of the stack S1 (assuming the LIFO nature of operations
in a stack). So, I will use the above strategy for implementing the operations related to Queue
using two stacks.

1.2 Part (b)
This part demanded from us to write pseudo-codes for various operations of Queue. I will implement
all of them one by one by assuming that the given stacks support operations like push, pop, IsEmpty
and IsFull.

IsEmptyQueue: For this operation, I will just check if stack S1 is empty or not, since it contains
the oldest element on the top.

Algorithm 1: Checking for emptiness of queue

1 struct Queue { stack S1, S2 }
2 Function IsEmptyQueue(Queue q):
3 if IsEmpty (q.S1) then
4 return true

5 return false

IsFullQueue: For this operation, I will just check if stack S1 is full or not, since it contains
the all of the elements in the Queue at any state.

1

Algorithm 2: Checking for fullness of queue

1 struct Queue { stack S1, S2 }
2 Function IsFullQueue(Queue q):
3 if IsFull (q.S1) then
4 return true

5 return false

Dequeue : For this operation I will just pop from the stack S1 and that will return me the
oldest/first inserted element.

Algorithm 3: Perform Dequeue operation

1 struct Queue { stack S1, S2 }
2 Function Dequeue(Queue q):
3 if IsEmptyQueue (q) then
4 print ("Queue is Empty")
5 return
6 x = pop(q.S1)
7 return x

Enqueue : For this operation, I will apply the strategy that I explained in the Part (a) of this
problem.

Algorithm 4: Perform Enqueue operation

1 struct Queue { stack S1, S2 }
2 Function Enqueue(Queue q, element x):
3 if IsFullQueue (q) then
4 print ("Queue is already full")
5 return
6 while q.S1 is not empty do
7 y = pop(q.S1)
8 push(q.S2, y)

9 push(q.S2, x)
10 while q.S2 is not empty do
11 y = pop(q.S2)
12 push(q.S1, y)

13 return

Top : This function returns the value of the element present in the front of the queue with-
out popping it. Therefore, for this operation I will just return the element present in the top of the
stack S1. I will assume that stack provided supports the operation top. If not, then we would have
to first dequeue from the queue and then enqueue the same element.

2

Algorithm 5: Getting front element of the queue

1 struct Queue { stack S1, S2 }
2 Function Top(Queue q):
3 if IsEmptyQueue (q) then
4 print ("Queue is Empty")
5 return
6 x = top(q.S1)
7 return x

Time Complexity Analysis : We will analyse the time complexity of each of the above defined
functions one by one. I will assume here that stacks S1 and S2 have been implemented in standard
manner and the time complexities of their operations are the same as discussed in class.

• IsEmptyQueue : Since checking for the emptiness of stack S1 will take constant amount of
time, therefore this complete function (Algorithm 1) will take constant time and hence the
time complexity for checking emptiness of queue would be O(1).

• IsFullQueue : Since checking for the fullness of stack S1 will take constant amount of time,
therefore this complete function (Algorithm 2) will take constant time and hence the time
complexity for checking fullness of queue would be O(1).

• Dequeue : Since popping an element from stack S1 and checking for the queue’s emptiness
will take constant amount of time, therefore this complete function (Algorithm 3) will take
constant amount of time and hence the time complexity for dequeue operation would be O(1).

• Enqueue : For Algorithm 4, checking for fullness of queue takes constant amount of time,
the while loops on line 6 and line 10 take amount of time proportional to the number of
elements in the queue since each operation inside the loop takes constant amount of time
and they themselves get repeated number of times equal to size of queue at that instant.
Therefore, the overall time complexity of the Enqueue function becomes O(n) where n is the
size of queue.

• Top : Time Complexity of this function (Algortihm 5) relies on the fact if the provided stacks
support operation such as top. If yes, then the time complexity would be O(1), since getting
the top element of stack takes constant amount of time. If no, then the running time would
be the sum of running time of dequeue and enqueue operations, which implies the time
complexity turns out to be same as enqueue operation which is O(n).

1.3 Part (c)
This part of the problem demanded from us to argue about the correctness of the strategy deployed
above. The main idea of the strategy used above is to use only one of the stacks to store the elements
at any point of time and use the other stack as a buffer which is to be used when adding a new
elemennt in the queue. Now, I will argue about the correctness of each function one by one.

• IsEmptyQueue: Since, the strategy described above uses only one of the stacks say S1 to
store the elements, checking for emptiness of that stack would suffice for checking emptiness
of the queue as a whole. This is exactly what is done in Algorithm 1. Hence, proved.

3

• IsFullQueue : Since, the strategy described above uses only one of the stacks say S1 to store
the elements, checking for the fullness of that stack would suffice for checking fullness of the
queue as a whole. This is exactly what is done in Algorithm 2. Hence, proved.

For proving the correctness of implementation of queue we need to prove that dequeue always
returns the oldest element entered in queue.

Observation : If at a particular state, stack S1 holds the elements in chronological order with
oldest being on top and newest being on bottom, performing any of the above five operations will
not change this state/order (the new elements would also be in chronological order with oldest on
top and newest on bottom).

Proof. The first two operations (IsFullQueue, IsEmptyQueue) do not change the original queue at
all therefore they will not change the chronological state of queue. Now, we will check for the other
three operations.
Dequeue : This operation will take away the oldest/top element on the stack S1 and since we
are not disturbing any other element the other elements will remain in same order and hence the
complete queue will still be in chronological order with oldest on top and newest on bottom.
Enqueue : Notice the fact that moving all elements from one stack to another reverses the
chronological order of elements. For proving this without loss of generality, let’s assume that initial
chronological order was such that oldest was on top and newest was on bottom, now the top elements
would be popped first and pushed into the empty stack so that they occupy the bottom of that stack
and newer elements would be popped later and hence would occupy the top of the new stack which
leads to reversal of the order. Now, applying Algorithm 4 here would first lead to reversal of order of
elements in stack S2 with newer elements on top and older at bottom. Now adding a new element
(x) to the top would not change the order of remaining elements and hence the order of the complete
queue would be maintained. Now, another transfer from stack S2 to S1 would again change the
order and hence the oldest element would again be on top and newerst on bottom. Hence, the
original chronological order before applying enqueue operation is still maintained.
Top : This operation will return the oldest/top element on the stack S1 and since we are not
disturbing any element, all elements will remain in same order and hence the complete queue will
still be in chronological order with oldest on top and newest on bottom.

Hence, using the above observation we can say that since at the start of the queue’s timeline since
there was no element and it is chronologically ordered, the queue will remain ordered after any
operation. Hence, the dequeue operation would always fetch the first entered element which is the
characteristic property of queues and hence the algorithm is correct.

II Problem 2

2.1 Part (a)
This problem required us to write the pseudo-code for in-order traversal of binary tree in a recursive
manner. I will use the linked representation of binary tree to implement the program as used in
the class. The main idea of the algorithm is to move to the subtree rooted at left child of the current
node first and then print the current node’s value and then moving to the subtree rooted at right
child of the current node.

4

Algorithm 6: In-order traversal of a binary tree in recursive manner
Input: Binary Tree T in linked format with T representing root of the tree
Output: Prints the binary tree in in-order traversal order

1 Function InorderTraversal(Binary_Tree T):
2 if T is not nil then
3 InorderTraversal (T.lchild)
4 print (T.val)
5 InorderTranversal (T.rchild)

6 return

2.2 Part (b)
This part required us to write the pseudo code written above in non-recursive format with the help
of stack. I will use the same linked representation of binary tree as used in the previous part for
solving this. Also I will assume that the stack operates in the same way as discussed in lectures
and provides the basic operations. The main idea of the algorithm is to visit the leftmost part of
the tree and push the nodes visited while traversing to the leftmost part into the stack and then
printing the value of the leftmost non visited node and then moving to the right subtree in a similar
way.

Algorithm 7: In-order traversal of a binary tree in non-recursive manner
Input: Binary Tree T in linked format pointing to root of the tree and a Stack S
Output: Prints the binary tree in in-order traversal order in non-recursive manner

1 Function InorderTraversalStack(Stack S):
2 temp = pop(S)
3 while S is not empty OR temp is not nil do
4 while temp is not nil do
5 push (S, temp)
6 temp = temp.lchild

7 temp = pop (S)
8 print (temp)
9 temp = temp.rchild

10 return
11 Function CreateStack(Stack S, Binary_Tree T):
12 push (S, T)
13 InorderTraversalStack (S)
14 return

2.3 Part (c)
This part required us to prove the correctness of the algorithm given above. We will use the
following specification that traversing a tree in In-order traversal will always print the leftmost
node which is not printed yet. So, we will try to prove that if we traverse tree according to the above

5

algorithm we will always print the nodes of tree according to the above specification and hence it’s
correctness.

Observation 1 : After the loop at line 4 stack S contains the leftmost node of the binary tree
rooted at temp.

Proof. It is easy to proof this observation by noticing that at each step we are moving to the left
child of current node and the loop stops when there is no left child of that node and hence that node
has to be the leftmost node in the whole tree. Since, we are also filling the stack simultaneously so
just before the loop terminates it stores this node (which has no left child) and hence the top of the
stack contains the leftmost node in this tree.

We will prove the correctness of loop at line 3 using loop invariant. The specific loop invariant in
this case would be that the value which was printed inside previous iteration was the leftmost
among the nodes that were not printed yet. Let’s prove this invariant now.

Initialisation : At the start of the loop, there was no previous loop so the invariant is triv-
ially true.

Maintenance : Suppose the following invariant holds before line 4. Notice that in the end of
execution of previous loop, the new value of temp is the right child of the last printed node, and
since the last printed node was the leftmost among the non-printed nodes, therefore by the property
of binary tree the tree rooted at right child of this node would be the one which contains the leftmost
non-printed node in the tree. Now, using Observation 1 the stack contains the leftmost node in
this subtree at the top after loop at line 4 and print this node’s value next. Hence, the invariant
holds after the execution of the loop.

Before proceeding with the termination part of the invariant, I would prove that at the end
of the program every node of the tree gets printed exactly once.

Proof. We will prove this using two observations.

• It’s trivial to see that if a particular node gets into the stack, it’s both child nodes also get into
the stack. And if a node doesn’t get printed, it means it never entered the stack. This is only
possible if either it doesn’t have a parent (root) or the parent doesn’t enter into the stack. The
first case is not possible since the root always enters into the stack first. The second implies
that parent doesn’t enter the stack and it’s only possible if it’s parent doesn’t enter the stack
and in this way we can ascend the tree to imply that root didn’t enter the stack which is
contradiction. Hence, every element enters into the stack and gets printed atleast once.

• According to the above loop invariant every loop prints the lowest amongst the non-printed
nodes. Therefore a node can’t get printed twice as after getting printed once it would not be
in set of non-printed nodes.

Hence, proved that all the nodes get printed exactly once after at the end of the program.

Termination : At this stage the value of temp would be nil and stack S would be empty. And since
every node in the tree got printed by the above observations, they would get printed in the right
order as specified in the specification also by the invariant property. Hence proved, that above
algorithm satisfies the specification of inorder traversal.

6

III Problem 3

3.1 Part (a)

Algorithm 8: Non-recursive Merge Sort using Stacks A
Input: Array A containing n integers
Output: Number of inversions present in A

1 Function MergeSort(Array A, Length of Array n):
2 S = Empty Stack that can store integers
3 S.push (0), S.push (0), S.push (n−1)
4 while S is not empty do
5 (x, y, z) = (S.pop(), S.pop(), S.pop())
6 if z == 1 then
7 Merge(A, y, x)

8 else if y< x then
9 mid = ⌊ x+y

2
⌋

10 S.push(1), S.push(y), S.push(x)
11 S.push(0), S.push(y), S.push(mid)
12 S.push(0), S.push(mid+1), S.push(x)

13 return
14 Function Merge(Array A, start l, end r):
15 sorted = Empty array of size r− l+1, i = l, j = mid+1, k = 0
16 while i ≤ mid AND j ≤ r do
17 if A[i] <= A[j] then
18 sorted[k]= A[i]
19 k = k+1
20 i = i+1
21 else
22 sorted[k]= A[j]
23 k = k+1
24 j = j+1

25 while i ≤ mid do
26 sorted[k]= A[i]
27 k = k+1
28 i = i+1

29 while j ≤ r do
30 sorted[k]= A[j]
31 k = k+1
32 j = j+1

33 for i = l to r do
34 A[i]= sorted[i− l]

35 return
36

7

This problem demanded us to write the pseudo code for implementing non-recursive merge sort
using a single stack. I will assume that the stacks available support basic operations like Push,
Pop and IsEmpty.

The main idea of the algorithm involves using the bottom-up method in the sense that we move
from bottom of the tree in divide and conquer to the top non-recursively by storing the array ranges
in the stack. Therefore, stack will contain ranges with smallest ranges on the top of stack and
biggest ranges on the bottom. We would be merging these ranges from top of the stack to bottom
and in the end we would get the sorted array.

I will represent every array range in form of a tuple of integers (a, l, r) such that l and r are the
start and end of the range and a is a boolean value which is true if a range is ready to be merged
(both the half-arrays have been sorted) and false otherwise. Since, here we were only allowed to use
stacks which support integers therefore instead of storing the ranges as tuples, I will push these
three values one by one into stack and pop them in the same order and boolean a would be true iff
it is 1 and false if it is 0.

3.2 Part (b)
Implementation based.

3.3 Part (c)
Implementation based.

8

	Problem 1
	Part (a)
	Part (b)
	Part (c)

	Problem 2
	Part (a)
	Part (b)
	Part (c)

	Problem 3
	Part (a)
	Part (b)
	Part (c)

