
ESO207A : Data Structures and Algorithms
Assignment 4 Solutions

Team Name : Invariantly_Yours

Yatharth Goswami: 191178
Sarthak Rout : 190772

Devanshu Singla : 190274

November 16, 2020

I Problem 1 - Part (c)

Algorithm 1: PseudoCode - Bottom - Up Dynamic Programming Algorithm
Input: A list of words L and a number M
Output: ’Neat’ printout of words and minimum cost

1 L -> List of words
2 n -> Length of L
3 l -> Array containing lengths of corresponding words from L
4 cost -> Array containing cost of printing neatly words from current index to n
5 last -> Array storing the position of the last word which should appear on the first line of

the optimal solution of Lk to Ln.

6 Function Bottom-Up(L):
7 for i = n down to 1 do
8 if

∑n
k=i lk + (n - k) < M then

9 cost[i]= 0
10 continue

11 cost_min =∞
12 for j = 1 to min(n-i, m) do
13 temp = M− (

∑ j
k=1 l i+k + j−1)

14 if temp >= 0 and temp*temp*temp + cost[i+j+1] < cost_min then
15 cost_min = temp∗ temp∗ temp + cost[i+ j+1]
16 last[i] = i+ j

17 cost[i]= cost_min

18 Function PrintNeatly(last, cost):
19 end = last[0]
20 prev = 0
21 while prev != n do
22 for i = prev+1 to end do
23 Print L[i]

24 prev = end
25 end = last[end+1]

26 Print cost[0]

Time Complexity for algorithm 1
The function Bottom-Up represents the main algorithm, so will analyse this function only. In
function Bottom-Up, lines 8-17 execute n times. The condition in line 8 takes at most (n− i)c1 time,
for some c1, to execute. If the condition is true the statements 9, 10 are executed taking constant
time say c2. Otherwise, statements 11-17 are executed. Statements 11 and 17 take constant time
say c3. Statements 12-16 run min(m,n− i) times taking time of at most min(m,n− i)c4. Hence, one
loop executes in either at most (n− i)c1 + c2 time or at most (n− i)c1 + c3 +min(m,n− i)c4, which
implies one loop take at most cmin(m,n− i) time for some c. Therefore, if time needed to execute
algorithm be T(n), then:

T(n)≤
n∑

i=1
cmin(m,n− i)

=⇒ T(n)≤ cmin(mn,
n(n−1)

2
)

Therefore, time complexity of algorithm is O(nmin(m,n)).

Space Complexity of algorithm 1
Space taken by predefined arrays like L, l, cost and last have space complexity of O(n). The local
variables in the function Bottom-Up occupy constant space, hence space complexity due to them is
O(1). So, overall space complexity = O(n)+O(1) = O(n).

1

Algorithm 2: PseudoCode - Top - Down Dynamic Programming Algorithm
Input: A list of words L and a number M
Output: ’Neat’ printout of words and minimum cost

1 N = 1e9 + 7
2 MAX_SIZE = 100005
3 PrefixSums[MAX_SIZE]
4 DP[MAX_SIZE][2]
5 Function Precompute(L):
6 for i in L.size do
7 PrefixSums[i+1] = PrefixSums[i] + L[i]

8 for i = 1 to MAX_SIZE do
9 DP[i][0] = ∞

10 DP[i][1] = -1

11 return
12 Function LengthSum(a, b):
13 if a == 0 then
14 return PrefixSums[b]

15 else
16 return PrefixSums[b] - PrefixSums[a-1]

17 Function PrintWords(DP):
18 idx = 1
19 while idx < n do
20 nidx = dp[idx][1]; for i =idx to nidx do
21 Print L[idx-1]

22 idx = nidx

23 if idx <= n then
24 for i = idx to nidx do
25 Print L[idx-1]

26 Function ResolveDP(i, n):
27 if i >= n then
28 return 0

29 else if DP[i][0] != ∞ then
30 return DP[i][0]

31 else
32 for k = i+1 to n+1 do
33 z = M - LengthSum (i, k-1) - (k-1 - i)
34 if z < 0 then
35 break
36 part_sum = ResolveDP(k, n)
37 if k == n + 1 then
38 DP[i][0] = 0
39 DP[i][1] = k

40 else if z*z*z + part_sum < DP[i][0] then
41 DP[i][0] = z*z*z + part_sum
42 DP[i][1] = k

43 DP[i][0] = DP[i][0]%N
44 return DP[i][0]

45 return
46 Function GetNeatWords(L):
47 Precompute(L)
48 minimised_quantity = ResolveDP(1, L.size)
49 PrintWords(DP)

2

Time Complexity for algorithm 2
For function Precompute, the for loop in line 6-7 will execute for n times, hence requires O(n) time.
Similarly, for loop in lines 8-9 executes MAX_SIZE time which is O(n), hence time complexity for
"for loop" is O(n).

Therefore, time complexity of function Precompute =O(n)+O(n)=O(n).
In function LengthSum(a,b), all lines run in constant time, which implies time complexity of

LengthSum is O(1).
In function ResolveDP(i,n), if i >= n or DP[i][0] has been changed from initial value ’∞’ then

it executes in constant time otherwise lines 32-44 are executed. When DP[i][0] 6= ∞. Since
initially DP[i][0]=∞,∀i, hence first call at line 48 to ResolveDP(1,L.size) will execute line 32-45.
While executing ResolveDP(1,L.size), it will first call ResolveDP(k,n) in line 36 where k = 2 and
n = L.size. This will continue to happen, in the execution of ResolveDP(i,n), ResolveDP(k,n) is
executed in line 36 where k = i+1,n = L.size, till k becomes equal to n. Since, execution of lines
32-45, either line 38 or line 41 execute once and hence DP[i][0] changes, it implies further calls to
ResolveDP(i,n) will execute lines 27-30 and hence will be constant time operation. Let T(i) denote
the time complexity for the call ResolveDP(i,n) when DP[j,n] for i ≤ j < n has not been changed,
where n = L.size. During execution of first loop in ResolveDP(i,n), the time taken for statement 36
is T(i+1) and rest of statements is constant time c1. After execution of ResolveDP(i+1,n), DP[j][0]
have been changed for i < j < n, hence in further execution of loops, line 36 will run in constant
time. Therefore for atmost M loops(in case loop breaks at 33) or atmost (n-i-1) loops (in case for
loop completes successfully without breaking), lines 33-44 execute in constant time, say upper limit
be c2. Therefore,

T(i)≤ T(i+1)+ c1 +min(M, (n− i−1))c2

=⇒ T(i)≤ T(i+1)+min(M,n− i)c , for some c independent of i

=⇒ T(i)≤ T(j)+
j−1∑
k=i

min(M,n−k)c, for some l ≤ n

Since execution of ResolveDP(n,n) take constant time say c3, putting j = n in above equation,

T(i)≤ c3 +
n−1∑
k=i

min(M,n−k)c

=⇒ T(i)≤ c3 +min(M(n−1),
(n− i)(n− i+1)

2
)c

Since execution of Resolve(1,n) takes T(1) ≤ c3 +min(M(n−1), (n−1)(n)
2)c time, it implies time

complexity of Resolve(1,n) is O(nmin(M,n)).

Since the main part of algorithm is line 47 and 48, therefore the time complexity of algorithm =
O(n)+O(nmin(M,n)) = O(nmin(M,n)), where n = L.size.

Space Complexity of algorithm 2
In the algorithm, MAX_SIZE refers to the maximum number of lines possible which is obviously
less than n. Hence the space complexity of global variables in lines 1-4 is O(n).

In functions Precompute and LengthSum , the local variables occupy constant space, hence
space complexity due to them is O(1).

While executing ResolveDP(1,n), where n = L.size, it can be seen from above analysis the
maximum depth of recursion is n, hence at max n stack frames of the function ResolveDP are
created and since the local variables in function ResolveDP occupy constant space, it implies space
complexity for the local variables in the call ResolveDP(1,n) is O(n).

So, total space complexity due to algorithm = O(1)+O(n)+O(n) = O(n).

II Observations
We generated random text of 10000 words online with M = 20. For measuring time, we used
<chrono> and <ctime> library of C++. The PC set up used had 8th gen Intel i5 processor with 8 GB
of RAM.

3

Table 1: Table of time taken

Top-Down Approach Bottom Up Approach
0.012998 0.035828
0.009974 0.030913
0.010972 0.041188
0.008978 0.034870
0.015990 0.040331
0.008976 0.024934
0.008973 0.026261
0.008989 0.033172
0.008978 0.032910
0.008960 0.039381

Averaging over 10 observations, the Top-Down approach took 0.0104 s and the Bottom-Up
approach took 0.0339 s.
The bottom-up approach took about 3 times more time than top-down approach to solve the problem.
We understand it in this way that, since, in Top-Down approach, we only calculate the relevant
sub-problems once, which contribute to the dominant O(n2) term and in Bottom-Up approach, we
fill the whole table for all states, it takes some more time by a constant factor of about 3.

4

	Problem 1 - Part (c)
	Observations

