ESO207A : Data Structures and Algorithms Assignment 4 Solutions

Team Name : Invariantly_Yours

Yatharth Goswami: 191178 Sarthak Rout : 190772 Devanshu Singla : 190274

November 16, 2020

Algorithm 1: PseudoCode - Bottom - Up Dynamic Programming Algorithm

Input: A list of words *L* and a number *M*

Output: 'Neat' printout of words and minimum cost

¹ *L* -> List of words

- **²** *n* -> Length of *L*
- **³** *l* -> Array containing lengths of corresponding words from *L*
- **⁴** *cost* -> Array containing cost of printing neatly words from current index to *n*
- **⁵** *last* -> Array storing the position of the last word which should appear on the first line of the optimal solution of L_k to L_n .

 Function Bottom-Up(*L*)**: for** *i = n down to 1* **do | if** $\sum_{k=i}^{n} l_k + (n-k) < M$ **then** \vert \vert \vert $cost[i] = 0$ 10 \continue $\vert \cdot \vert \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ *cost_min* = ∞ **for** $j = 1$ to min(n-i, m) **do** $\left| \int dm p = M - (\sum_{k=1}^{j} l_{i+k} + j - 1) \right|$ **if** $temp \ge 0$ and $temp^*temp \neq cost[i+j+1] < cost_min$ **then** \vert \vert \vert \vert $cost_min = temp * temp * temp + cost[i+j+1]$ 16 | | | $last[i] = i + j$ cost[*i*] = *cost*_*min* **Function** PrintNeatly(*last, cost*)**:** $end = last[0]$ 20 *prev* = 0 **while** *prev != n* **do for** $i = prev+1$ to end **do** | | Print L[i] *prev* = *end* $end = lastend + 1$ Print *cost*[0]

Time Complexity for algorithm 1

The function Bottom-Up represents the main algorithm, so will analyse this function only. In function Bottom-Up, lines 8-17 execute *n* times. The condition in line 8 takes at most $(n-i)c_1$ time, for some c_1 , to execute. If the condition is true the statements 9, 10 are executed taking constant time say c_2 . Otherwise, statements 11-17 are executed. Statements 11 and 17 take constant time say c_3 . Statements 12-16 run min $(m, n-i)$ times taking time of at most min $(m, n-i)c_4$. Hence, one loop executes in either at most $(n-i)c_1 + c_2$ time or at most $(n-i)c_1 + c_3 + \min(m, n-i)c_4$, which implies one loop take at most *c*min(*m*,*n*− *i*) time for some *c*. Therefore, if time needed to execute algorithm be $T(n)$, then:

$$
T(n) \le \sum_{i=1}^{n} c \min(m, n - i)
$$

$$
\implies T(n) \le c \min(mn, \frac{n(n-1)}{2})
$$

Therefore, time complexity of algorithm is $O(nmin(m, n))$.

Space Complexity of algorithm 1

Space taken by predefined arrays like L, l, cost and last have space complexity of $O(n)$. The local variables in the function Bottom-Up occupy constant space, hence space complexity due to them is *O*(1). So, overall space complexity = $O(n) + O(1) = O(n)$.

```
Algorithm 2: PseudoCode - Top - Down Dynamic Programming Algorithm
  Input: A list of words L and a number M
  Output: 'Neat' printout of words and minimum cost
1 N = 1e9 + 72 MAX_SIZE = 100005
3 PrefixSums[MAX_SIZE]
4 DP[MAX_SIZE][2]
5 Function Precompute(L):
6 for i in L.size do
7 PrefixSums[i+1] = PrefixSums[i] + L[i]8 for i = 1 to MAX_SIZE do
 9 | DP[i][0] = \infty10 | DP[i][1] = -1
11 return
12 Function LengthSum(a, b):
13 if a == 0 then
14 return PrefixSums[b]
15 else
16 return PrefixSums[b] - PrefixSums[a-1]
17 Function PrintWords(DP):
18 \vert idx = 1
19 while idx < n do
20 \vert nidx = dp[idx][1]; for i = idx to nidx do
21 Print L[idx-1]
22 idx = nidx
23 if idx \leq n then
24 for i = i dx to nidx do
25 Print L[idx-1]
26 Function ResolveDP(i, n):
27 if i > n then
28 return 0
29 else if DP[i][0] != \infty then
30 return DP[i][0]
31 else
32 \mid \textbf{for } k = i + 1 \text{ to } n + 1 \textbf{ do}33 \vert \vert \vert z = M - LengthSum (i, k-1) - (k-1 - i)
34 if z < 0 then
35 break
36 | | part_sum = ResolveDP(k, n)
37 if k == n + 1 then
38 DP[i][0] = 0
39 | | | DP[i][1] = k
40 else if z^*z^*z + part\_sum < DP[i][0] then
41 | | | DP[i][0] = z^*z^*z + part_sum
42 | | | DP[i][1] = k
43 | DP[i][0] = DP[i][0]%N
44 return DP[i][0]
45 return
46 Function GetNeatWords(L):
47 Precompute(L)
48 minimised_quantity = ResolveDP(1, L.size)
49 PrintWords(DP)
```
Time Complexity for algorithm 2

For function Precompute, the for loop in line 6-7 will execute for *n* times, hence requires O(n) time. Similarly, for loop in lines 8-9 executes MAX_SIZE time which is *O*(*n*), hence time complexity for "for loop" is $O(n)$.

Therefore, time complexity of function Precompute $= O(n) + O(n) = O(n)$.

In function LengthSum (a, b) , all lines run in constant time, which implies time complexity of LengthSum is *O*(1).

In function Resolve DP (i, n) , if $i \geq n$ or DP $[i][0]$ has been changed from initial value ' ∞ ' then it executes in constant time otherwise lines 32-44 are executed. When $DP[i][0] \neq \infty$. Since initially DP[*i*][0] = ∞,∀*i*, hence first call at line 48 to ResolveDP(1,*L*.*size*) will execute line 32-45. While executing ResolveDP(1,*L*.*size*), it will first call ResolveDP(k, n) in line 36 where $k = 2$ and $n = L.size$. This will continue to happen, in the execution of ResolveDP (i, n) , ResolveDP (k, n) is executed in line 36 where $k = i + 1, n = L.size$, till *k* becomes equal to n. Since, execution of lines 32-45, either line 38 or line 41 execute once and hence DP[*i*][0] changes, it implies further calls to ResolveDP (i, n) will execute lines 27-30 and hence will be constant time operation. Let $T(i)$ denote the time complexity for the call ResolveDP (i, n) when DP $[j, n]$ for $i \leq j \leq n$ has not been changed, where $n = L.size$. During execution of first loop in ResolveDP (i, n) , the time taken for statement 36 is $T(i+1)$ and rest of statements is constant time c_1 . After execution of ResolveDP $(i+1,n)$, DP[j][0] have been changed for $i < j < n$, hence in further execution of loops, line 36 will run in constant time. Therefore for atmost M loops(in case loop breaks at 33) or atmost (n-i-1) loops (in case for loop completes successfully without breaking), lines 33-44 execute in constant time, say upper limit be *c*2. Therefore,

$$
T(i) \leq T(i + 1) + c_1 + \min(M, (n - i - 1))c_2
$$

 $\Rightarrow T(i) \leq T(i+1) + \min(M, n-i)c$, for some *c* independent of *i*

$$
\implies T(i) \leq T(j) + \sum_{k=i}^{j-1} \min(M, n-k)c, \text{ for some } l \leq n
$$

Since execution of ResolveDP (n, n) take constant time say c_3 , putting $j = n$ in above equation,

$$
T(i) \le c_3 + \sum_{k=i}^{n-1} \min(M, n-k)c
$$

\n
$$
\implies T(i) \le c_3 + \min(M(n-1), \frac{(n-i)(n-i+1)}{2})c
$$

Since execution of Resolve $(1, n)$ takes $T(1) \le c_3 + \min(M(n-1), \frac{(n-1)(n)}{2})c$ time, it implies time complexity of Resolve $(1, n)$ is $O(nmin(M, n))$.

Since the main part of algorithm is line 47 and 48, therefore the time complexity of algorithm = $O(n) + O(n \min(M, n)) = O(n \min(M, n))$, where $n = L.size$.

Space Complexity of algorithm 2

In the algorithm, MAX_SIZE refers to the maximum number of lines possible which is obviously less than *n*. Hence the space complexity of global variables in lines 1-4 is $O(n)$.

In functions Precompute and LengthSum , the local variables occupy constant space, hence space complexity due to them is *O*(1).

While executing ResolveDP $(1,n)$, where $n = L.size$, it can be seen from above analysis the maximum depth of recursion is *n*, hence at max *n* stack frames of the function ResolveDP are created and since the local variables in function ResolveDP occupy constant space, it implies space complexity for the local variables in the call $\text{ResolveDP}(1,n)$ is $O(n)$.

So, total space complexity due to algorithm = $O(1) + O(n) + O(n) = O(n)$.

II Observations

We generated random text of 10000 words online with $M = 20$. For measuring time, we used <chrono> and <ctime> library of C++. The PC set up used had 8th gen Intel i5 processor with 8 GB of RAM.

Table 1: Table of time taken

Averaging over 10 observations, the **Top-Down** approach took **0.0104** s and the **Bottom-Up** approach took **0.0339** s.

The bottom-up approach took about 3 times more time than top-down approach to solve the problem. We understand it in this way that, since, in Top-Down approach, we only calculate the relevant sub-problems once, which contribute to the dominant $O(n^2)$ term and in Bottom-Up approach, we fill the whole table for all states, it takes some more time by a constant factor of about 3.